معرفی شرکت ها


fastreport-0.0.6


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

-
ویژگی مقدار
سیستم عامل -
نام فایل fastreport-0.0.6
نام fastreport
نسخه کتابخانه 0.0.6
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Kishore
ایمیل نویسنده <kishoresshankar@gmail.com>
آدرس صفحه اصلی https://github.com/kishore-s-gowda/fastreport
آدرس اینترنتی https://pypi.org/project/fastreport/
مجوز MIT
# Fastreport Get report of different metrices for classification and regression problem for many popular algorithms with single line of code. You have to pass only features(dataframe) and target(series) as arguments Link to [PyPI](https://pypi.org/project/fastreport/) Link to [Classification detailed example](https://github.com/kishore-s-gowda/fastreport/blob/master/Classification%20example.ipynb) Link to [Regression detailed example](https://github.com/kishore-s-gowda/fastreport/blob/master/Regression%20Problem.ipynb) ## Installation Run the following to install: ```python pip install fastreport ``` ### Install sklearn and xgboost ```python pip install sklearn ``` ```python pip install xgboost ``` ## Usage ### Classification ```python import report report.report_classification(df_features,df_target,algorithms='default',test_size=0.3,scaling=None, large_data=False,encode='dummy',average='binary',change_data_type = False, threshold=8,random_state=None): ``` parameters ---------------------------- df_features : Pandas DataFrame df_target : Pandas Series algorithms : List ,'default'= [LogisticRegression(), GaussianNB(), DecisionTreeClassifier(), RandomForestClassifier(), GradientBoostingClassifier(), AdaBoostClassifier(), XGBClassifier()] The above are the default algorithms, if one needs any specific algorithms, they have to import libraries then pass the instances of alogorith as list For example, if one needs random forest and adaboost only, then pass algorithms=[RandomForestClassifier(max_depth=8),AdaBoostClassifier()] But, these libraries must be imported before passing into above list like test_size: If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. scaling : {'standard-scalar', 'min-max'} or None , default=None encode : {'dummy','onehot','label'} ,default='dummy' change_data_type : bool, default=False Some columns will be of numerical datatype though there are only 2-3 unique values in that column, so these columns must be converted to object as it is more relevant. By setting change_data_type= True , these columns will be converted into object datatype threshold : int ,default=8 Maximum unique value a column can have large_data : bool, default=False If the dataset is large then the parameter large_data should be set to True, make sure if your system has enough memory before setting Large_data=True average : {'micro', 'macro', 'samples','weighted', 'binary'} or None, default='binary' This parameter is required for multiclass/multilabel targets. If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'binary'``: Only report results for the class specified by ``pos_label``. This is applicable only if targets (``y_{true,pred}``) are binary. ``'micro'``: Calculate metrics globally by counting the total true positives, false negatives and false positives. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters 'macro' to account for label imbalance; it can result in an F-score that is not between precision and recall. ``'samples'``: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification where this differs from :func:`accuracy_score`). random_state : int, RandomState instance or None, default=None ### Regression ```python import report report.report_regression(df_features,df_target,algorithms='default',test_size=0.3, scaling=None,large_data=False,change_data_type=True,encode='dummy', threshold=8,random_state=None): ``` parameters ---------------------------- df_features : Pandas DataFrame df_target : Pandas Series algorithms : List ,'default'= [LinearRegression(), Lasso(), Ridge(), RandomForestRegressor(), GradientBoostingRegressor(), AdaBoostRegressor(), XGBRegressor] The above are the default algorithms, if one needs any specific algorithms, they have to import libraries then pass the instances of alogorith as list For example, if one needs random forest and adaboost only, then pass algorithms=[RandomForestRegressor(max_depth=8),AdaBoostRegressor()] But, these libraries must be imported before passing into above list like test_size: If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. scaling : {'Standard-scalar', 'min-max'} or None , default=None encode : {'dummy','onehot','label'} ,default='dummy' change_data_type : bool, default=False Some columns will be of numerical datatype though there are only 2-3 unique values in that column, so these columns must be converted to object as it is more relevant. By setting change_data_type= True , these columns will be converted into object datatype threshold : int ,default=8 Maximum unique value a column can have large_data : bool, default=False If the dataset is large then the parameter large_data should be set to True, make sure if your system has enough memory before setting Large_data=True random_state : int, RandomState instance or None, default=None ## Future works 1. Optimization 2. Add more functionality ## Drawbacks 1. Not suitable for very large datasets 2. Limited to existing users only ## License © 2021 KISHORE S This repository is licensed under the MIT license. See LICENSE for details.


نحوه نصب


نصب پکیج whl fastreport-0.0.6:

    pip install fastreport-0.0.6.whl


نصب پکیج tar.gz fastreport-0.0.6:

    pip install fastreport-0.0.6.tar.gz