معرفی شرکت ها


fastprogress-1.0.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A nested progress with plotting options for fastai
ویژگی مقدار
سیستم عامل -
نام فایل fastprogress-1.0.3
نام fastprogress
نسخه کتابخانه 1.0.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Sylvain Gugger
ایمیل نویسنده info@fast.ai
آدرس صفحه اصلی https://github.com/fastai/fastprogress
آدرس اینترنتی https://pypi.org/project/fastprogress/
مجوز Apache Software License 2.0
# fastprogress A fast and simple progress bar for Jupyter Notebook and console. Created by Sylvain Gugger for fast.ai. <img src="https://github.com/fastai/fastprogress/raw/master/images/cifar_train.gif" width="600"> ## Install To install simply use ``` pip install fastprogress ``` or: ``` conda install -c fastai fastprogress ``` Note that this requires python 3.6 or later. ## Usage ### Example 1 Here is a simple example. Each bar takes an iterator as a main argument, and we can specify the second bar is nested with the first by adding the argument `parent=mb`. We can then: - add a comment in the first bar by changing the value of `mb.main_bar.comment` - add a comment in the second bar by changing the value of `mb.child.comment` - write a line between the two bars with `mb.write('message')` ``` python from fastprogress.fastprogress import master_bar, progress_bar from time import sleep mb = master_bar(range(10)) for i in mb: for j in progress_bar(range(100), parent=mb): sleep(0.01) mb.child.comment = f'second bar stat' mb.main_bar.comment = f'first bar stat' mb.write(f'Finished loop {i}.') #mb.update_graph(graphs, x_bounds, y_bounds) ``` <img src="https://github.com/fastai/fastprogress/raw/master/images/pb_basic.gif" width="600"> ### Example 2 To add a graph that get plots as the training goes, just use the command `mb.update_graphs`. It will create the figure on its first use. Arguments are: - `graphs`: a list of graphs to be plotted (each of the form `[x,y]`) - `x_bounds`: the min and max values of the x axis (if `None`, it will those given by the graphs) - `y_bounds`: the min and max values of the y axis (if `None`, it will those given by the graphs) Note that it's best to specify `x_bounds` and `y_bounds`, otherwise the box will change as the loop progresses. Additionally, we can give the label of each graph via the command `mb.names` (should have as many elements as the graphs argument). ``` python import numpy as np mb = master_bar(range(10)) mb.names = ['cos', 'sin'] for i in mb: for j in progress_bar(range(100), parent=mb): if j%10 == 0: k = 100 * i + j x = np.arange(0, 2*k*np.pi/1000, 0.01) y1, y2 = np.cos(x), np.sin(x) graphs = [[x,y1], [x,y2]] x_bounds = [0, 2*np.pi] y_bounds = [-1,1] mb.update_graph(graphs, x_bounds, y_bounds) mb.child.comment = f'second bar stat' mb.main_bar.comment = f'first bar stat' mb.write(f'Finished loop {i}.') ``` <img src="https://github.com/fastai/fastprogress/raw/master/images/pb_cos.gif" width="600"> Here is the rendering in console: <img src="https://github.com/fastai/fastprogress/raw/master/images/pb_console.gif" width="800"> If the script using this is executed with a redirect to a file, only the results of the `.write` method will be printed in that file. ### Example 3 Here is an example that a typical machine learning training loop can use. It also demonstrates how to set `y_bounds` dynamically. ``` def plot_loss_update(epoch, epochs, mb, train_loss, valid_loss): """ dynamically print the loss plot during the training/validation loop. expects epoch to start from 1. """ x = range(1, epoch+1) y = np.concatenate((train_loss, valid_loss)) graphs = [[x,train_loss], [x,valid_loss]] x_margin = 0.2 y_margin = 0.05 x_bounds = [1-x_margin, epochs+x_margin] y_bounds = [np.min(y)-y_margin, np.max(y)+y_margin] mb.update_graph(graphs, x_bounds, y_bounds) ``` And here is an emulation of a training loop that uses this function: ``` from fastprogress.fastprogress import master_bar, progress_bar from time import sleep import numpy as np import random epochs = 5 mb = master_bar(range(1, epochs+1)) # optional: graph legend: if not set, the default is 'train'/'valid' # mb.names = ['first', 'second'] train_loss, valid_loss = [], [] for epoch in mb: # emulate train sub-loop for batch in progress_bar(range(2), parent=mb): sleep(0.2) train_loss.append(0.5 - 0.06 * epoch + random.uniform(0, 0.04)) # emulate validation sub-loop for batch in progress_bar(range(2), parent=mb): sleep(0.2) valid_loss.append(0.5 - 0.03 * epoch + random.uniform(0, 0.04)) plot_loss_update(epoch, epochs, mb, train_loss, valid_loss) ``` And the output: <img src="https://github.com/fastai/fastprogress/raw/master/images/pb_graph.gif" alt="Output"> ---- Copyright 2017 onwards, fast.ai. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. A copy of the License is provided in the LICENSE file in this repository.


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl fastprogress-1.0.3:

    pip install fastprogress-1.0.3.whl


نصب پکیج tar.gz fastprogress-1.0.3:

    pip install fastprogress-1.0.3.tar.gz