معرفی شرکت ها


fastner-0.1.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Finetune transformer-based models for the Named Entity Recognition task in a simple and fast way.
ویژگی مقدار
سیستم عامل -
نام فایل fastner-0.1.3
نام fastner
نسخه کتابخانه 0.1.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Vittorio Maggio
ایمیل نویسنده posta.maggio@gmail.com
آدرس صفحه اصلی https://github.com/vittoriomaggio/fastner
آدرس اینترنتی https://pypi.org/project/fastner/
مجوز -
# fastner fastner is a Python package to finetune transformer-based models for the Named Entity Recognition task in a simple and fast way. It is based on the torch and the transformer🤗 libraries. ## Main features The last version of fastner provides: ### Models The transformer-based models that you can use for the finetuning are: - Bert base uncased (bert-base-uncased) - DistilBert base uncased (distilbert-base-uncased) ### Tagging scheme The labels of the dataset given as input must comply with the tagging scheme: - IOB (Inside, Outside, Beginning), also known as BIO ### Dataset scheme The datasets given as input (train, validation, test) **must have two columns** named: - **tokens**: contains the tokens of the several examples - **tags**: contains the labels of the respective tokens Example: | **tokens** | **tags**| |--|--| |['Apple', 'CEO', 'Tim', 'Cook', 'introduces', 'the', 'new', 'iPhone']|['B-ORG', 'O', ''B-PER', 'I-PER', 'O', 'O','O', 'O']| ## Installation ### With pip fastner can be installed using [pip](https://pypi.org/project/fastner/) as follows: pip install fastner ## How to use it Use fastner is very easy! All you need is a dataset that respects the format previously given. The core function is the ***train_test()*** function: **Parameters:** - training_set (*string* or pandas *DataFrame*) - path of the *.csv* training set or the *pandas.DataFrame* object of the training set - validation_set (*string* or pandas *DataFrame*) - path of the *.csv* validation set or the *pandas.DataFrame* object of the validation set - test_set: default (*optional*, *string* or pandas *DataFrame*) - path of the *.csv* test set or the *pandas.DataFrame* object of the test set - model_name (*string*, default: *'bert-base-uncased'*) - name of the model to finetune (available: *'bert-base-uncased'* or *'distilbert-base-uncased'*) - train_args (*transformers.TrainingArguments*) - arguments for the training (see [hugginface documenation](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments)) - max_len (*integer*, default: *512*) - input sequence length (tokenizer) - loss (*string*, default=*'CE'*) - loss function, the only one available at the moment is the 'CE' Cross Entropy - callbacks (*optional*, *list* of *transformers callbacks*) - list of transformers callbacks (see [hugginface documentation](https://huggingface.co/docs/transformers/main_classes/callback)) - device (*integer*, default: *0*) - id of the device on which to perform the training **Outputs:** - train_results (*dict*) - dict with training info (runtime, samples per second, steps per seconds, loss, epochs) - eval_results (*dict*) - dict with evaluation metrics on the validation set (precision, recall, f1 both overall and for the single entities, loss) - test_results (*dict*) - dict with evaluation metrics on the test set (precision, recall, f1 both overall and for the single entities, loss) - trainer (*transofrmers.Trainer*) - *transformers.Trainer* object used ## Example An example of fastner in action: from transformers import TrainingArguments, EarlyStoppingCallback from fastner import train_test args = TrainingArguments( num_train_epochs = 5, per_device_train_batch_size = 32, per_device_eval_batch_size = 8, output_dir= "./models", evaluation_strategy="epoch", logging_strategy = "epoch", save_strategy = "epoch", load_best_model_at_end= True, metric_for_best_model = 'eval_loss') train_results, eval_results, test_results, trainer = train_test( training_set = conll2003_train, validation_set = conll2003_val, test_set=conll2003_test, train_args = args, model_name='distilbert-base-uncased', max_len=128, loss='CE', callbacks= [EarlyStoppingCallback(early_stopping_patience=3)], device=0) ## Work in Progress A few spoilers about future releases: - New models - New tagging formats - New function that takes as input the dataset without any tagging scheme and returns it with the chosen tagging scheme


نیازمندی

مقدار نام
- pandas
- numpytorch
- transformers
- datasets
- seqeval


نحوه نصب


نصب پکیج whl fastner-0.1.3:

    pip install fastner-0.1.3.whl


نصب پکیج tar.gz fastner-0.1.3:

    pip install fastner-0.1.3.tar.gz