معرفی شرکت ها


fasterrisk-0.1.7


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Create sparse and accurate risk scoring systems!
ویژگی مقدار
سیستم عامل -
نام فایل fasterrisk-0.1.7
نام fasterrisk
نسخه کتابخانه 0.1.7
نگهدارنده ['Jiachang Liu']
ایمیل نگهدارنده ['jiachang.liu@duke.edu']
نویسنده Jiachang Liu
ایمیل نویسنده jiachang.liu@duke.edu
آدرس صفحه اصلی https://pypi.org/project/fasterrisk/
آدرس اینترنتی https://pypi.org/project/fasterrisk/
مجوز BSD 3-Clause
# fasterrisk <!-- omit in toc --> [![docs](https://readthedocs.org/projects/fasterrisk/badge/?version=latest)](https://readthedocs.org/projects/fasterrisk/?badge=latest) [![pypi](https://img.shields.io/pypi/v/fasterrisk?color=blue)](https://pypi.org/project/fasterrisk/) [![license](https://img.shields.io/badge/License-BSD-brightgreen)](https://github.com/jiachangliu/FasterRisk/blob/main/LICENSE) [![Downloads](https://pepy.tech/badge/fasterrisk)](https://pepy.tech/project/fasterrisk) [![downloads](https://img.shields.io/pypi/dm/fasterrisk)](https://pypistats.org/packages/fasterrisk) [![arxiv badge](https://img.shields.io/badge/arXiv-2210.05846-red)](https://arxiv.org/abs/2210.05846) This repository contains source code to our NeurIPS 2022 paper: [**FasterRisk: Fast and Accurate Interpretable Risk Scores**](https://arxiv.org/abs/2210.05846) - Documentation: [https://fasterrisk.readthedocs.io](https://fasterrisk.readthedocs.io) - GitHub: [https://github.com/jiachangliu/FasterRisk](https://github.com/jiachangliu/FasterRisk) - PyPI: [https://pypi.org/project/fasterrisk/](https://pypi.org/project/fasterrisk/) - Free and open source software: [BSD license](https://github.com/jiachangliu/FasterRisk/blob/main/LICENSE) # Table of Content <!-- omit in toc --> - [Introduction](#introduction) - [Installation](#installation) - [Python Usage](#python-usage) - [R tutorial](#r-tutorial) - [License](#license) - [Contributing](#contributing) # Introduction Over the last century, risk scores have been the most popular form of predictive model used in healthcare and criminal justice. Risk scores are sparse linear models with integer coefficients; often these models can be memorized or placed on an index card. Below is a risk score example created on the 3rd fold of the [adult dataset](https://github.com/ustunb/risk-slim/tree/master/examples/data) by FasterRisk, predicting salary> 50K. | | | | | :--- | ---: | :--- | |1. No High School Diploma | -4 points | ... | |2. High School Diploma | -2 points | + ... | |3. Age 22 to 29 | -2 points | + ... | |4. Any Capital Gains | 3 points | + ... | |5. Married | 4 points | + ... | | | SCORE | = | | | | | | | | | | |:--- | :----: | :----: | :----: | :----: | :----: | :----: | :----: | |SCORE | -8 | -6 | -5 | -4 | -3 | -2 | -1 | |RISK | 0.1% | 0.4% | 0.7% | 1.2% | 2.3% | 4.2% | 7.6% | |SCORE | 0 | 1 | 2 | 3 | 4 | 5 | 7 | |RISK | 13.3% | 22.3% | 34.9% | 50.0% | 65.1% | 77.7% | 92.4% | Typically, risk scores have been created either without data or by rounding logistic regression coefficients, but these methods do not reliably produce high-quality risk scores. Recent work used mathematical programming, which is computationally slow. We introduce an approach for efficiently producing a collection of high-quality risk scores learned from data. Specifically, our approach produces a pool of almost-optimal sparse continuous solutions, each with a different support set, using a beam-search algorithm. Each of these continuous solutions is transformed into a separate risk score through a "star ray" search, where a range of multipliers are considered before rounding the coefficients sequentially to maintain low logistic loss. Our algorithm returns all of these high-quality risk scores for the user to consider. This method completes within minutes and can be valuable in a broad variety of applications. # Installation ```bash conda create -n FasterRisk python=3.9 # create a virtual environment conda activate FasterRisk # activate the virtual environment python -m pip install fasterrisk # pip install the fasterrisk package ``` # Python Usage Please see the [example.ipynb](https://github.com/jiachangliu/FasterRisk/blob/main/docs/example.ipynb) jupyter notebook on GitHub or [Example Usage](https://fasterrisk.readthedocs.io/en/latest/example.html) on Read the Docs for a detailed tutorial on how to use FasterRisk in a python environment. The detailed descriptions of key functions can be found in the [API Reference](https://fasterrisk.readthedocs.io/en/latest/autoapi/index.html) on Read the Docs. There are two major two classes for the users to interact with: - **RiskScoreOptimizer** ```python sparsity = 5 # produce a risk score model with 5 nonzero coefficients # import data X_train, y_train = ... # initialize a risk score optimizer m = RiskScoreOptimizer(X = X_train, y = y_train, k = sparsity) # perform optimization m.optimize() # get all top m solutions from the final diverse pool arr_multiplier, arr_intercept, arr_coefficients = m.get_models() # get m solutions from the diverse pool; Specifically, arr_multiplier.shape=(m, ), arr_intercept.shape=(m, ), arr_coefficients.shape=(m, p) # get the first solution from the final diverse pool by passing an optional model_index; models are ranked in order of increasing logistic loss multiplier, intercept, coefficients = m.get_models(model_index = 0) # get the first solution (smallest logistic loss) from the diverse pool; Specifically, multiplier.shape=(1, ), intercept.shape=(1, ), coefficients.shape=(p, ) ``` - **RiskScoreClassifier** ```python # import data X_featureNames = ... # X_featureNames is a list of strings, each of which is the feature name # create a classifier clf = RiskScoreClassifier(multiplier = multiplier, intercept = intercept, coefficients = coefficients, featureNames = featureNames) # get the predicted label y_pred = clf.predict(X = X_train) # get the probability of predicting y[i] with label +1 y_pred_prob = clf.predict_prob(X = X_train) # compute the logistic loss logisticLoss_train = clf.compute_logisticLoss(X = X_train, y = y_train) # get accuracy and area under the ROC curve (AUC) acc_train, auc_train = clf.get_acc_and_auc(X = X_train, y = y_train) # print the risk score model card m.print_model_card() ``` # R tutorial FasterRisk can also be easily used inside R. See the [R tutorial](https://github.com/jiachangliu/FasterRisk/blob/main/R_tutorial/README.md) on how to apply FasterRisk on an example dataset. # License `fasterrisk` was created by Jiachang Liu. It is licensed under the terms of the BSD 3-Clause license. # Contributing Interested in contributing? Check out the contributing guidelines. Please note that this project is released with a Code of Conduct. By contributing to this project, you agree to abide by its terms. # Credits <!-- omit in toc --> `fasterrisk` was created with [`cookiecutter`](https://cookiecutter.readthedocs.io/en/latest/) and the `py-pkgs-cookiecutter` [template](https://github.com/py-pkgs/py-pkgs-cookiecutter). # Citing Our Work <!-- omit in toc --> If you find our work useful in your research, please consider citing the following paper: ```BibTeX @article{liu2022fasterrisk, title={FasterRisk: Fast and Accurate Interpretable Risk Scores}, author={Liu, Jiachang and Zhong, Chudi and Li, Boxuan and Seltzer, Margo and Rudin, Cynthia}, booktitle={Proceedings of Neural Information Processing Systems}, year={2022} } ``` <!-- # How to Build and Push to pypi-test and pypi ```terminal rm dist/* poetry build poetry config repositories.test-pypi https://test.pypi.org/legacy/ # push to pypi-test poetry publish -r test-pypi -u __token__ -p pypi-TOKEN python -m pip install --index-url https://test.pypi.org/simple/ --extra-index-url https://pypi.org/simple fasterrisk # push to pypi poetry publish -u __token__ -p pypi-TOKEN ``` -->


نیازمندی

مقدار نام
>=1.23.3,<2.0.0 numpy
==1.2.0 scikit-learn
==1.5.2 pandas
>=2.28.1,<3.0.0 requests


زبان مورد نیاز

مقدار نام
>=3.8,<4.0 Python


نحوه نصب


نصب پکیج whl fasterrisk-0.1.7:

    pip install fasterrisk-0.1.7.whl


نصب پکیج tar.gz fasterrisk-0.1.7:

    pip install fasterrisk-0.1.7.tar.gz