معرفی شرکت ها


fastdebug-0.1.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A library that improves the debugging messages for Pytorch and fastai
ویژگی مقدار
سیستم عامل -
نام فایل fastdebug-0.1.4
نام fastdebug
نسخه کتابخانه 0.1.4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Zachary Mueller
ایمیل نویسنده muellerzr@gmail.com
آدرس صفحه اصلی https://github.com/muellerzr/fastdebug/tree/master/
آدرس اینترنتی https://pypi.org/project/fastdebug/
مجوز Apache Software License 2.0
# fastdebug > A helpful library for improving torch and fastai errors ## Install `pip install fastdebug` ## How to use `fastdebug` is designed around improving the quality of life when dealing with Pytorch and fastai errors, while also including some new sanity checks (fastai only) ### Pytorch Pytorch now has: * `device_error` * `layer_error` Both can be imported with: ```python from fastdebug.error.torch import device_error, layer_error ``` `device_error` prints out a much more readable error for when two tensors aren't on the same device: ```python inp = torch.rand().cuda() model = model.cpu() try: _ = model(inp) except Exception as e: device_error(e, 'Input type', 'Model weights') ``` And our new log: ```bash --------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) <ipython-input-28-981e0ace9c38> in <module>() 2 model(x) 3 except Exception as e: ----> 4 device_error(e, 'Input type', 'Model weights') 10 frames /usr/local/lib/python3.7/dist-packages/torch/tensor.py in __torch_function__(cls, func, types, args, kwargs) 993 994 with _C.DisableTorchFunction(): --> 995 ret = func(*args, **kwargs) 996 return _convert(ret, cls) 997 RuntimeError: Mismatch between weight types Input type has type: (torch.cuda.FloatTensor) Model weights have type: (torch.FloatTensor) Both should be the same. ``` And with `layer_error`, if there is a shape mismatch it will attempt to find the right layer it was at: ```python inp = torch.rand(5,2, 3) try: m(inp) except Exception as e: layer_error(e, m) ``` ```python --------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) <ipython-input-84-d4ab91131841> in <module>() 3 m(inp) 4 except Exception as e: ----> 5 layer_error(e, m) <ipython-input-83-ca2dc02cfff4> in layer_error(e, model) 8 i, layer = get_layer_by_shape(model, shape) 9 e.args = [f'Size mismatch between input tensors and what the model expects\n\n{args}\n\tat layer {i}: {layer}'] ---> 10 raise e <ipython-input-84-d4ab91131841> in <module>() 1 inp = torch.rand(5,2, 3) 2 try: ----> 3 m(inp) 4 except Exception as e: 5 layer_error(e, m) /mnt/d/lib/python3.7/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs) 725 result = self._slow_forward(*input, **kwargs) 726 else: --> 727 result = self.forward(*input, **kwargs) 728 for hook in itertools.chain( 729 _global_forward_hooks.values(), /mnt/d/lib/python3.7/site-packages/torch/nn/modules/container.py in forward(self, input) 115 def forward(self, input): 116 for module in self: --> 117 input = module(input) 118 return input 119 /mnt/d/lib/python3.7/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs) 725 result = self._slow_forward(*input, **kwargs) 726 else: --> 727 result = self.forward(*input, **kwargs) 728 for hook in itertools.chain( 729 _global_forward_hooks.values(), /mnt/d/lib/python3.7/site-packages/torch/nn/modules/conv.py in forward(self, input) 421 422 def forward(self, input: Tensor) -> Tensor: --> 423 return self._conv_forward(input, self.weight) 424 425 class Conv3d(_ConvNd): /mnt/d/lib/python3.7/site-packages/torch/nn/modules/conv.py in _conv_forward(self, input, weight) 418 _pair(0), self.dilation, self.groups) 419 return F.conv2d(input, weight, self.bias, self.stride, --> 420 self.padding, self.dilation, self.groups) 421 422 def forward(self, input: Tensor) -> Tensor: RuntimeError: Size mismatch between input tensors and what the model expects Model expected 4-dimensional input for 4-dimensional weight [3, 3, 1, 1], but got 3-dimensional input of size [5, 2, 3] instead at layer 1: Conv2d(3, 3, kernel_size=(1, 1), stride=(1, 1)) ``` ### fastai Along with the additions above (and are used during `fit`), fastai now has a `Learner.sanity_check` function, which allows you to quickly perform a basic check to ensure that your call to `fit` won't raise any exceptions. They are performed on the CPU for a partial epoch to make sure that `CUDA` device-assist errors can be preemptively found. To use it simply do: ```python from fastdebug.fastai import * from fastai.vision.all import * learn = Learner(...) learn.sanity_check() ``` This is also now an argument in `Learner`, set to `False` by default, so that after making your `Learner` a quick check is ensured. ```python learn = Learner(..., sanity_check=True) ```


نیازمندی

مقدار نام
- pip
- packaging
>=1.7.0 torch
>=2.0.0 fastai
>=5.3.0 inflect


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl fastdebug-0.1.4:

    pip install fastdebug-0.1.4.whl


نصب پکیج tar.gz fastdebug-0.1.4:

    pip install fastdebug-0.1.4.tar.gz