معرفی شرکت ها


fastSE-0.3.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A fine-tuned state estimator for power system.
ویژگی مقدار
سیستم عامل -
نام فایل fastSE-0.3.2
نام fastSE
نسخه کتابخانه 0.3.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Zeyu Mao
ایمیل نویسنده zeyumao2@tamu.edu
آدرس صفحه اصلی https://github.com/mzy2240/fastSE/tree/master/
آدرس اینترنتی https://pypi.org/project/fastSE/
مجوز Apache Software License 2.0
# 🚀FastSE [![PyPI pyversions](https://img.shields.io/pypi/pyversions/fastSE.svg)](https://pypi.python.org/pypi/fastSE/) [![PyPI version fury.io](https://badge.fury.io/py/fastSE.svg)](https://pypi.python.org/pypi/fastSE/) [![Downloads](https://pepy.tech/badge/fastse)](https://pepy.tech/project/fastse) [![PyPI license](https://img.shields.io/pypi/l/fastSE.svg)](https://pypi.python.org/pypi/fastSE/) > A collection of power system computation modules sparse matrix + aot/jit + klu + custom improved ordering + python = efficiency in computation and development! # 🌟Features * ⚡Jitted and KLU-powered [state estimation](https://github.com/mzy2240/fastSE/blob/master/fastse/se.py) * ⚡Jitted and KLU-powered [power flow](https://github.com/mzy2240/fastSE/blob/master/fastse/pf.py) * ⚡Jitted and KLU-powered [continuation power flow](https://github.com/mzy2240/fastSE/blob/master/fastse/cpf.py) * ⚡Jitted and KLU-powered [temperature-dependent power flow](https://github.com/mzy2240/fastSE/blob/master/fastse/tdpf.py) * :crab:Rust-powered network routing for operational resilience # Installation To install, simply run `pip install fastSE` in your command prompt. # How to use Here is one simple example. `solve_se_lm` is a high-level function which computes derivatives, assemble them as sparse matrix and then calculate the estimates using sparse matrix solver. All the low-level functions could also be imported and used individually. ```python from fastse import StateEstimator, StateEstimationInput from fastse import bdd_validation from scipy.sparse import csr_matrix import numpy as np import time # A 5 bus example from Prof. Overbye's textbook # node impedance Ybus = np.array([[3.729 - 49.720j, 0.000 + 0.000j, 0.000 + 0.000j, 0.000 + 0.000j, -3.729 + 49.720j], [0.000 + 0.000j, 2.678 - 28.459j, 0.000 + 0.000j, -0.893 + 9.920j, -1.786 + 19.839j], [0.000 + 0.000j, 0.000 + 0.000j, 7.458 - 99.441j, -7.458 + 99.441j, 0.000 + 0.000j], [0.000 + 0.000j, -0.893 + 9.920j, -7.458 + 99.441j, 11.922 - 147.959j, -3.571 + 39.679j], [-3.729 + 49.720j, -1.786 + 19.839j, 0.000 + 0.000j, -3.571 + 39.679j, 9.086 - 108.578j]]) Ybus = csr_matrix(Ybus) # branch impedance Yf = np.array([[ 3.729-49.720j, 0.000 +0.000j, 0.000 +0.000j, 0.000 +0.000j, -3.729+49.720j], [ 0.000 +0.000j, -0.893 +9.920j, 0.000 +0.000j, 0.893 -9.060j, 0.000 +0.000j], [ 0.000 +0.000j, -1.786+19.839j, 0.000 +0.000j, 0.000 +0.000j, 1.786-19.399j], [ 0.000 +0.000j, 0.000 +0.000j, 7.458-99.441j, -7.458+99.441j, 0.000 +0.000j], [ 0.000 +0.000j, 0.000 +0.000j, 0.000 +0.000j, -3.571+39.679j, 3.571-39.459j]]) Yf = csr_matrix(Yf) Yt = np.array([[-3.729+49.720j, 0.000 +0.000j, 0.000 +0.000j, 0.000 +0.000j, 3.729-49.720j], [ 0.000 +0.000j, 0.893 -9.060j, 0.000 +0.000j, -0.893 +9.920j, 0.000 +0.000j], [ 0.000 +0.000j, 1.786-19.399j, 0.000 +0.000j, 0.000 +0.000j, -1.786+19.839j], [ 0.000 +0.000j, 0.000 +0.000j, -7.458+99.441j, 7.458-99.441j, 0.000 +0.000j], [ 0.000 +0.000j, 0.000 +0.000j, 0.000 +0.000j, 3.571-39.459j, -3.571+39.679j]]) Yt = csr_matrix(Yt) # branch from and to bus f = np.array([0, 3, 4, 2, 4]) t = np.array([4, 1, 1, 3, 3]) # slack, pv and pq buses slack = np.array([0]) # The slack bus does not have to be the 0-indexed bus pq = np.array([1, 3, 4]) pv = np.array([2]) # measurements se_input = StateEstimationInput() se_input.p_inj = np.array([ 3.948e+00, -8.000e+00, 4.400e+00, -6.507e-06, -1.407e-05]) se_input.p_inj_idx = np.arange(len(se_input.p_inj)) se_input.p_inj_weight = np.full(len(se_input.p_inj), 0.01) se_input.q_inj = np.array([ 1.143e+00, -2.800e+00, 2.975e+00, 6.242e-07, 1.957e-06]) se_input.q_inj_idx = np.arange(len(se_input.q_inj)) se_input.q_inj_weight = np.full(len(se_input.q_inj), 0.01) se_input.vm_m = np.array([0.834, 1.019, 0.974]) se_input.vm_m_idx = pq se_input.vm_m_weight = np.full(len(se_input.vm_m), 0.01) # First time will be slow due to compilation start = time.time() estimator = StateEstimator() v_sol, err, converged, results = estimator.solve_se_lm(se_input, Ybus, Yf, Yt, f, t, slack, pq, pv, flat=True) print("compilation + execution time:", time.time() - start) bdd_validation(results, m=len(se_input.measurements), n=Ybus.shape[0] + len(pq) + len(pv)) # But then it will be very performant start = time.time() v_sol, err, converged, results = estimator.solve_se_lm(se_input, Ybus, Yf, Yt, f, t, slack, pq, pv, flat=True) print("Execution time:", time.time() - start) # Start from previous solution (set flat = False) start = time.time() v_sol, err, converged, results = estimator.solve_se_lm(se_input, Ybus, Yf, Yt, f, t, slack, pq, pv, flat=False) print("Execution time:", time.time() - start) # False data injection se_input.vm_m[1] -= 0.025 se_input.vm_m[2] += 0.025 v_sol, err, converged, results = estimator.solve_se_lm(se_input, Ybus, Yf, Yt, f, t, slack, pq, pv) print("-------------After False Data Injection-------------") bdd_validation(results, m=len(se_input.measurements), n=Ybus.shape[0] + len(pq) + len(pv)) ``` # References ### Temperature Dependent Power Flow (Temperature Dependent Load Flow) S. Frank, J. Sexauer and S. Mohagheghi, "Temperature-Dependent Power Flow," in IEEE Transactions on Power Systems, vol. 28, no. 4, pp. 4007-4018, Nov. 2013, doi: 10.1109/TPWRS.2013.2266409. Rahman, Mahbubur et al. “Power handling capabilities of transmission systems using a temperature-dependent power flow.” Electric Power Systems Research (2019): n. pag. # Acknowledge This work was supported by the U.S. Department of Energy (DOE) under award DE-OE0000895 and the Sandia National Laboratories’ directed R&D project #222444.


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl fastSE-0.3.2:

    pip install fastSE-0.3.2.whl


نصب پکیج tar.gz fastSE-0.3.2:

    pip install fastSE-0.3.2.tar.gz