معرفی شرکت ها


fast-transformer-0.2.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

An implementation of Fastformer: Additive Attention Can Be All You Need in TensorFlow
ویژگی مقدار
سیستم عامل -
نام فایل fast-transformer-0.2.0
نام fast-transformer
نسخه کتابخانه 0.2.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Rishit Dagli
ایمیل نویسنده rishit.dagli@gmail.com
آدرس صفحه اصلی https://github.com/Rishit-dagli/Fast-Transformer
آدرس اینترنتی https://pypi.org/project/fast-transformer/
مجوز -
# Fast Transformer [![Twitter](https://img.shields.io/twitter/url?style=social&url=https%3A%2F%2Fgithub.com%2FRishit-dagli%2FFast-Transformer)](https://twitter.com/intent/tweet?text=Wow:&url=https%3A%2F%2Fgithub.com%2FRishit-dagli%2FFast-Transformer) ![PyPI](https://img.shields.io/pypi/v/fast-transformer) [![Lint Code Base](https://github.com/Rishit-dagli/Fast-Transformer/actions/workflows/linter.yml/badge.svg)](https://github.com/Rishit-dagli/Fast-Transformer/actions/workflows/linter.yml) [![Upload Python Package](https://github.com/Rishit-dagli/Fast-Transformer/actions/workflows/python-publish.yml/badge.svg)](https://github.com/Rishit-dagli/Fast-Transformer/actions/workflows/python-publish.yml) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Rishit-dagli/Fast-Transformer/blob/main/example/fast-transformer-example.ipynb) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.5406025.svg)](https://doi.org/10.5281/zenodo.5406025) ![GitHub License](https://img.shields.io/github/license/Rishit-dagli/Fast-Transformer) [![GitHub stars](https://img.shields.io/github/stars/Rishit-dagli/Fast-Transformer?style=social)](https://github.com/Rishit-dagli/Fast-Transformer/stargazers) [![GitHub followers](https://img.shields.io/github/followers/Rishit-dagli?label=Follow&style=social)](https://github.com/Rishit-dagli) [![Twitter Follow](https://img.shields.io/twitter/follow/rishit_dagli?style=social)](https://twitter.com/intent/follow?screen_name=rishit_dagli) This repo implements [Fastformer: Additive Attention Can Be All You Need](https://arxiv.org/abs/2108.09084) by Wu et al. in TensorFlow. **Fast Transformer** is a Transformer variant based on additive attention that can handle long sequences efficiently with linear complexity. Fastformer is much more efficient than many existing Transformer models and can meanwhile achieve comparable or even better long text modeling performance. ![](https://github.com/Rishit-dagli/Fast-Transformer/blob/main/media/architecture.png) ## Installation Run the following to install: ```sh pip install fast-transformer ``` ## Developing fast-transformer To install `fast-transformer`, along with tools you need to develop and test, run the following in your virtualenv: ```sh git clone https://github.com/Rishit-dagli/Fast-Transformer.git # or clone your own fork cd fast-transformer pip install -e .[dev] ``` To run rank and shape tests run the following: ```py python -m fast_transformer.test_fast_transformer ``` ## Usage ```python import tensorflow as tf from fast_transformer import FastTransformer mask = tf.ones([1, 4096], dtype=tf.bool) model = FastTransformer( num_tokens = 20000, dim = 512, depth = 2, max_seq_len = 4096, absolute_pos_emb = True, # Absolute positional embeddings mask = mask ) x = tf.experimental.numpy.random.randint(0, 20000, (1, 4096)) logits = model(x) # (1, 4096, 20000) ``` ## Want to Contribute 🙋‍♂️? Awesome! If you want to contribute to this project, you're always welcome! See [Contributing Guidelines](CONTRIBUTING.md). You can also take a look at [open issues](https://github.com/Rishit-dagli/Fast-Transformer/issues) for getting more information about current or upcoming tasks. ## Want to discuss? 💬 Have any questions, doubts or want to present your opinions, views? You're always welcome. You can [start discussions](https://github.com/Rishit-dagli/Fast-Transformer/discussions). ## Citation ```bibtex @misc{wu2021fastformer, title = {Fastformer: Additive Attention is All You Need}, author = {Chuhan Wu and Fangzhao Wu and Tao Qi and Yongfeng Huang}, year = {2021}, eprint = {2108.09084}, archivePrefix = {arXiv}, primaryClass = {cs.CL} } ``` [Yannic Kilcher's video](https://youtu.be/qgUegkefocg) was super helpful while building this. ## License ``` Copyright 2020 Rishit Dagli Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ```


نیازمندی

مقدار نام
>=2.5.0 tensorflow
~=0.3.0 einops
~=0.1.0 rotary-embedding-tensorflow
- check-manifest
- twine
- numpy
- black


نحوه نصب


نصب پکیج whl fast-transformer-0.2.0:

    pip install fast-transformer-0.2.0.whl


نصب پکیج tar.gz fast-transformer-0.2.0:

    pip install fast-transformer-0.2.0.tar.gz