معرفی شرکت ها


fast-layers-0.1.7


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Fast-Layers is a python library for Keras and Tensorflow users: The fastest way to build complex deep neural network architectures with sequential models
ویژگی مقدار
سیستم عامل -
نام فایل fast-layers-0.1.7
نام fast-layers
نسخه کتابخانه 0.1.7
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Alexandre Mahdhaoui
ایمیل نویسنده alexandre.mahdhaoui@gmail.com
آدرس صفحه اصلی https://github.com/AlexandreMahdhaoui/fast-layers
آدرس اینترنتی https://pypi.org/project/fast-layers/
مجوز MIT
# Fast-Layers Fast-Layers is a python library for Keras and Tensorflow users: The fastest way to build complex deep neural network architectures with sequential models Installation: !pip install fast-layers https://pypi.org/project/fast-layers/ ## Introduction Tensorflow's sequential model is a very intuitive way to start learning about Deep Neural Networks. However it is quite hard to dive into more complex networks without learning more about Keras. Well it won't be hard anymore with Fast-layers! Define your Sequences and start building complex layers in a sequential fashion. I created fast-layers for beginners who wants to build more advanced networks and for experimented users who needs to quickly build and test complex module architectures. # Documentation Please note that eager execution is not supported for the moment #### class Sequence: Arguments: name: str, positional arg inputs: str: name of input pipe/connector | list: names of input pipes/connectors, positional arg sequence=None: list of keras.layers objects, is_output_layer=False, trainable=True, Attributes: inputs: str or list of input names. sequence: list of keras.layers objects, is_output_layer: True if this is the output Sequence of a Layer object. Methods: call(x, training=False): by calling the sequence through __call__(), computes x. self_build(): build the layers of the sequence into this Sequence object. #### class Layer: Arguments: sequences: list of sequences, trainable=True, n_iteration_error=50: max number of iteration permitted in the computation loop before break Attributes: names: list of sequences names trainable: True if the weights of this layer are trainable. sequences: list of sequences first_call=True: False means the Layer object has been called and n_iteration_error: max number of iteration permitted in the computation loop before break Methods: init_layer(sequences): Takes a list of sequences and initialize the layer. Is called on __init__() if the layer object has been instantiate with the argument sequences=*List of sequences* call(x, training=False): by calling the layer through __call__(), computes x. ## TUTORIAL: MNIST classification using Inception modules with Fast-Layers ### Try it yourself: https://www.kaggle.com/alexandremahdhaoui/fast-layers-tutorial ! original MNIST tutorial: https://www.tensorflow.org/datasets/keras_example Szegedy et al. 2014, Going deeper with convolutions: https://arxiv.org/pdf/1409.4842.pdf! ![szegedy et al 2014 Inception Module](https://user-images.githubusercontent.com/80970827/112069667-863ff780-8b6c-11eb-8c90-52c3cbc7917a.png) ```python # Imports and preprocessing import fast_layers as fl import tensorflow as tf import tensorflow_datasets as tfds from tensorflow.python.framework.ops import disable_eager_execution disable_eager_execution() (ds_train, ds_test), ds_info = tfds.load( 'mnist', split=['train', 'test'], shuffle_files=True, as_supervised=True, with_info=True, ) def normalize_img(image, label): return tf.cast(image, tf.float32) / 255., label ds_train = ds_train.map( normalize_img, num_parallel_calls=tf.data.experimental.AUTOTUNE) ds_train = ds_train.batch(128) ds_test = ds_test.batch(128) ``` ```python N_FILTERS = 16 PADDING = 'same' inception_module = fl.Layer() sequences = [ fl.Sequence('c1', 'input', sequence = [ tf.keras.layers.Conv2D(N_FILTERS, (1,1), padding=PADDING) ]), fl.Sequence('c1_c3', 'input', sequence = [ tf.keras.layers.Conv2D(N_FILTERS, (1,1), padding=PADDING), tf.keras.layers.Conv2D(N_FILTERS, (3,3), padding=PADDING) ]), fl.Sequence('c1_c5', 'input', sequence = [ tf.keras.layers.Conv2D(N_FILTERS, (1,1), padding=PADDING), tf.keras.layers.Conv2D(N_FILTERS, (5,5), padding=PADDING) ]), fl.Sequence('maxpool3_c1', 'input', sequence = [ tf.keras.layers.Conv2D(N_FILTERS, (3,3), padding=PADDING), tf.keras.layers.Conv2D(N_FILTERS, (1,1), padding=PADDING) ]), fl.Sequence('concat', ['c1','c1_c3','c1_c5','maxpool3_c1'], is_output_layer=True, sequence=[ tf.keras.layers.Concatenate(axis=-1)]) ] inception_module.init_layer(sequences) ``` ```python # A Layer can also be called like this: sequences_2 = [ fl.Sequence('c1', 'input', sequence = [ tf.keras.layers.Conv2D(N_FILTERS, (1,1), padding=PADDING) ]), fl.Sequence('c1_c3', 'input', sequence = [ tf.keras.layers.Conv2D(N_FILTERS, (1,1), padding=PADDING), tf.keras.layers.Conv2D(N_FILTERS, (3,3), padding=PADDING) ]), fl.Sequence('c1_c5', 'input', sequence = [ tf.keras.layers.Conv2D(N_FILTERS, (1,1), padding=PADDING), tf.keras.layers.Conv2D(N_FILTERS, (5,5), padding=PADDING) ]), fl.Sequence('maxpool3_c1', 'input', sequence = [ tf.keras.layers.Conv2D(N_FILTERS, (3,3), padding=PADDING), tf.keras.layers.Conv2D(N_FILTERS, (1,1), padding=PADDING) ]), fl.Sequence('concat', ['c1','c1_c3','c1_c5','maxpool3_c1'], is_output_layer=True, sequence=[ tf.keras.layers.Concatenate(axis=-1)]) ] inception_module_2 = fl.Layer(sequence = sequences_2) ``` ```python # Create and train the model model = tf.keras.models.Sequential([ inception_module, inception_module_2, tf.keras.layers.Flatten(), tf.keras.layers.Dense(128,activation='relu'), tf.keras.layers.Dense(10, activation='softmax') ]) model.compile( optimizer=tf.keras.optimizers.Adam(0.001), loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=[tf.keras.metrics.SparseCategoricalAccuracy()], ) history = model.fit( ds_train, epochs=6, validation_data=ds_test, verbose=2 ) ```


نیازمندی

مقدار نام
- tensorflow


نحوه نصب


نصب پکیج whl fast-layers-0.1.7:

    pip install fast-layers-0.1.7.whl


نصب پکیج tar.gz fast-layers-0.1.7:

    pip install fast-layers-0.1.7.tar.gz