معرفی شرکت ها


fast-async-1.1.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Thread based async library for python
ویژگی مقدار
سیستم عامل -
نام فایل fast-async-1.1.0
نام fast-async
نسخه کتابخانه 1.1.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده -
ایمیل نویسنده Bowen Feng <857514.leofeng@gmail.com>
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/fast-async/
مجوز The MIT License (MIT) Copyright © 2023 Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
# Fast Async ![Publish to PyPi](https://github.com/thebowenfeng/FastAsync/actions/workflows/build_and_dist.yml/badge.svg) A thread based, asynchronous programming framework built for Python. Designed and optimized for speed. Asyncio, the go-to asynchronous programming framework for Python, uses a single-threaded event loop to achieve concurrency. Although this prevents unnecessary computational overheads and race conditions, it is inherently not as fast as threads (even with inefficiencies brought along with GIL). In some scenarios where speed is of utmost importance and where computational resources are abundant, then it makes sense to use a multi-threading approach to concurrency. Fast Async is a high-level API for Python `threads`, providing users with the ability to `await` asynchronous code, and other features such as event-driven, pubsub model (similar to Javascript's ```Promise.then()```). It aims to serve as an alternative to asyncio, for users who require faster execution speed. ## Installation Run ```pip install fast-async``` #### Running locally Clone the repository and make the working directory ```src/```. Alternatively, extract the folder ```src/fast_async```. ## Benchmarks #### Scenario (```sample.py```) A long-running network request and an expensive operation is executed asynchronously #### Result ```fast-async``` is, on average, almost 50% faster than ```asyncio``` due to asyncio executing the two tasks almost sequentially whilst fast-async leverages threads to execute them in parallel. ## FAQ #### When to use fast-async Fast-async should be used when execution speed is a higher priority. For example, uploading each frame of a video stream to a remote server. For cases where execution speed is not important, or when well-written code make the speed differences negligible, asyncio is preferred. #### What about ThreadPoolExecutor? ```ThreadPoolExecutor``` is a Python built-in class that offers some of the same functionalities as fast-async, namely the ability to wait for tasks, and limiting threads to conserve resources. However, fast-async is more feature-rich, such as the event-driven model (subscribers and callbacks) and various utility functions that mirror certain useful functionalities from other languages (such as JavaScript). Fast-async is designed to enhance developer experience when working with threads, by offering an easy-to-use interface and minimal pre-requisite knowledge. ## Documentation ### Decorators ```@make_async``` Make a function asynchronous. Functions that are decorated with ```make_async``` will return an object of type ```AsyncTask``` Aside from its type, decorated functions can be treated as a normal function. This means arguments can be passed in, much like a regular function. Exceptions raised within the decorated function will be caught and re-thrown in the caller thread. #### Example: ```python from fast_async import make_async @make_async def hello(message): print("hello world") return message # Awaits hello to finish executing return_val = hello("hello world").wait() # Prints "hello world" print(return_val) ``` ### Classes Package: fast_async.types.tasks ```class AsyncTask(func: Callable, *args, **kwargs)``` #### Attributes - func: A function or ```Callable```. - *args: Non-keyworded arguments for func - **kwargs: Keyworded arguments for func - status: Current status of func (pending, success, failure) - result: Return value of func - thread: ```Thread``` that func is being ran on - exception: First caught ```Exception``` raised in func #### Methods ```run()``` Runs ```func``` on a child thread, returns ```None```. ```wait()``` Awaits ```func``` to finish executing (blocks the caller thread), returns the return value of ```func```. ```subscribe(on_success: Callable, on_failure: Callable, blocks: bool = False)``` Subscribes success and failure callbacks that is invoked when task is finished executing or raised an exception. Optional blocks argument controls whether subscribe blocks the caller thread (by default subscribe does not block) ### Functions ```set_max_threads(num: int): None``` Set the max number of threads available to be consumed by tasks. Default is 64 threads. Useful when wanting to dynamically scale usage. #### Example: ```python from fast_async import set_max_threads set_max_threads(3) # Only allows a maximum of 3 concurrent threads ``` ```await_all(tasks: List[AsyncTask]): List``` Waits for all tasks in the ```tasks``` list to finish executing, or when a task fails, then the function will immediately raise an exception and exit. Returns a list of results corresponding to the list of tasks provided. Similar to JavaScript's ```Promise.all()``` #### Example: ```python from fast_async import make_async from fast_async.utils import await_all @make_async def func1(): return 1 @make_async def func2(): return 2 await_all([func1(), func2()]) # Will return [1, 2] ``` ```await_first(tasks: List[AsyncTask]): Any``` Waits for the first task in ```tasks``` list to finish executing and immediately returns the result. If all tasks fail, then the first failed task is raised in an exception. Returns the result of the first successful task. Similar to JavaScript's ```Promise.race()``` #### Example ```python from fast_async import make_async from fast_async.utils import await_first import time @make_async def func1(): time.sleep(1) return 1 @make_async def func2(): time.sleep(2) return 2 await_first([func1(), func2()]) # Will return 1, because func1 finishes first ```


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl fast-async-1.1.0:

    pip install fast-async-1.1.0.whl


نصب پکیج tar.gz fast-async-1.1.0:

    pip install fast-async-1.1.0.tar.gz