معرفی شرکت ها


fars-cleaner-1.3.5


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A package for loading and preprocessing the NHTSA FARS crash database
ویژگی مقدار
سیستم عامل -
نام فایل fars-cleaner-1.3.5
نام fars-cleaner
نسخه کتابخانه 1.3.5
نگهدارنده ['Mitchell Abrams']
ایمیل نگهدارنده ['mitchell.abrams@duke.edu']
نویسنده Mitchell Abrams
ایمیل نویسنده mitchell.abrams@duke.edu
آدرس صفحه اصلی https://github.com/mzabrams/fars-cleaner
آدرس اینترنتی https://pypi.org/project/fars-cleaner/
مجوز BSD-3-Clause
![GitHub release (latest SemVer)](https://img.shields.io/github/v/release/mzabrams/fars-cleaner) ![PyPI](https://img.shields.io/pypi/v/fars-cleaner) [![License](https://img.shields.io/badge/License-BSD%203--Clause-blue.svg)](https://opensource.org/licenses/BSD-3-Clause) [![DOI](https://zenodo.org/badge/252038452.svg)](https://zenodo.org/badge/latestdoi/252038452) [![status](https://joss.theoj.org/papers/2ca54c6935611fe3cb0303c49a354c51/status.svg)](https://joss.theoj.org/papers/2ca54c6935611fe3cb0303c49a354c51) # FARS Cleaner `fars_cleaner` `fars-cleaner` is a Python library for downloading and pre-processing data from the Fatality Analysis Reporting System, collected annually by NHTSA since 1975. ## Installation The preferred installation method is through `conda`. ```bash conda install -c conda-forge fars_cleaner ``` You can also install with [pip](https://pip.pypa.io/en/stable/). ```bash pip install fars-cleaner ``` ## Usage ### Downloading FARS data The `FARSFetcher` class provides an interface to download and unzip selected years from the NHTSA FARS FTP server. The class uses `pooch` to download and unzip the selected files. By default, files are unzipped to your OS's cache directory. ```python from fars_cleaner import FARSFetcher # Prepare for FARS file download, using the OS cache directory. fetcher = FARSFetcher() ``` Suggested usage is to download files to a data directory in your current project directory. Passing `project_dir` will download files to `project_dir/data/fars` by default. This behavior can be overridden by setting `cache_path` as well. Setting `cache_path` alone provides a direct path to the directory you want to download files into. ```python from pathlib import Path from fars_cleaner import FARSFetcher SOME_PATH = Path("/YOUR/PROJECT/PATH") # Prepare to download to /YOUR/PROJECT/PATH/data/fars # This is the recommended usage. fetcher = FARSFetcher(project_dir=SOME_PATH) # Prepare to download to /YOUR/PROJECT/PATH/fars cache_path = "fars" fetcher = FARSFetcher(project_dir=SOME_PATH, cache_path=cache_path) cache_path = Path("/SOME/TARGET/DIRECTORY") # Prepare to download directly to a specific directory. fetcher = FARSFetcher(cache_path=cache_path) ``` Files can be downloaded in their entirety (data from 1975-2018), as a single year, or across a specified year range. Downloading all of the data can be quite time consuming. The download will simultaneously unzip the folders, and delete the zip files. Each zipped file will be unzipped and saved in a folder `{YEAR}.unzip` ```python # Fetch all data fetcher.fetch_all() # Fetch a single year fetcher.fetch_single(1984) # Fetch data in a year range (inclusive). fetcher.fetch_subset(1999, 2007) ``` ### Processing FARS data Calling `load_pipeline` will allow for full loading and pre-processing of the FARS data requested by the user. ```python from fars_cleaner import FARSFetcher, load_pipeline fetcher = FARSFetcher(project_dir=SOME_PATH) vehicles, accidents, people = load_pipeline(fetcher=fetcher, first_run=True, target_folder=SOME_PATH) ``` Calling `load_basic` allows for simple loading of the FARS data for a single year, with no preprocessing. Files must be prefetched using a `FARSFetcher` or similar method. A `mapper` dictionary must be provided to identify what, if any, columns require renaming. ```python from fars_cleaner.data_loader import load_basic vehicles, accidents, people = load_basic(year=1975, data_dir=SOME_PATH, mapping=mappings) ``` ## Requirements Downloading and processing the full FARS dataset currently runs out of memory on Windows machines with only 16GB RAM. It is recommended to have at least 32GB RAM on Windows systems. macOS and Linux run with no issues on 16GB systems. ## Contributing Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change. See [CONTRIBUTING.md](CONTRIBUTING.md) for more details. ## License [BSD-3 Clause](https://choosealicense.com/licenses/bsd-3-clause/)


نیازمندی

مقدار نام
- dask
>=2022,<2023 distributed
xtr hypothesis;
>=1.22.0,<2.0.0) numpy
>=1.4,<2.0) pandas
- pathlib
>=1.6.0 pooch
>=0.23.1,<0.24.0 pyjanitor
>=7.1.0,<8.0.0) pytest
- requests
>=1.7.0,<2.0.0 scipy
- thefuzz
- tqdm


زبان مورد نیاز

مقدار نام
>=3.8,<4.0 Python


نحوه نصب


نصب پکیج whl fars-cleaner-1.3.5:

    pip install fars-cleaner-1.3.5.whl


نصب پکیج tar.gz fars-cleaner-1.3.5:

    pip install fars-cleaner-1.3.5.tar.gz