معرفی شرکت ها


faker-datasets-0.1.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Faker provider that loads data from your datasets
ویژگی مقدار
سیستم عامل -
نام فایل faker-datasets-0.1.0
نام faker-datasets
نسخه کتابخانه 0.1.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده -
ایمیل نویسنده Domenico Andreoli <domenico.andreoli@elastic.co>
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/faker-datasets/
مجوز Copyright (c) 2022 Elasticsearch B.V. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
# Build [Faker](https://github.com/joke2k/faker#readme) providers based on datasets `faker-datasets` offers a building block for seeding the data generation with existing data. You can create simple providers picking a random entry from a tailored dataset or assemble complex ones where you generate new combinations from more datasets, all this while keeping an eye on speed and memory consumption. Let's see how to. # Crash course We'll use the wonderful [Countries State Cities DB](https://github.com/dr5hn/countries-states-cities-database) maintained by [Darshan Gada](https://github.com/dr5hn). Download the [cities](https://raw.githubusercontent.com/dr5hn/countries-states-cities-database/v1.9/cities.json) and the [countries](https://raw.githubusercontent.com/dr5hn/countries-states-cities-database/v1.9/countries.json) datasets. ## Basic random picker `Cities` generates a city by randomly picking an entry in the cities dataset. Here the dataset is named `cities`, the dataset file is `cities.json` (adjust to the actual path of the file saved earlier) and the picker, the method to get a random city, is named `city`. How we define it in file `cities_provider.py`: ```python from faker_datasets import Provider, add_dataset @add_dataset("cities", "cities.json", picker="city") class Cities(Provider): pass ``` How we could use it to generate 10 cities: ```python from faker import Faker from cities_provider import Cities fake = Faker() fake.add_provider(Cities) for _ in range(10): # Use of the picker named in @add_dateset city = fake.city() print("{name} is in {country_name}".format(**city)) ``` One of the many possible outputs: ``` Poiana Cristei is in Romania Codosera La is in Spain Jeremoabo is in Brazil Rodrígo M. Quevedo is in Mexico Cary is in United States Locking is in United Kingdom Mezinovskiy is in Russia Nesoddtangen is in Norway Zalesnoye is in Ukraine Cefa is in Romania ``` Because the data generation is a pseudo-random process, every execution outputs different results. If you want reproducible outputs, you have to seed the Faker generator as documented [here](https://faker.readthedocs.io/en/master/index.html#seeding-the-generator). ## Customize the random picker `CitiesEx` is functionally identical to `Cities` but shows how to define the picker by yourself. Here `picker=` is gone from the parameters of `@add_dataset` but a new `city` method is defined. ```python from faker_datasets import Provider, add_dataset, with_datasets @add_dataset("cities", "cities.json") class CitiesEx(Provider): @with_datasets("cities") def city(self, cities): return self.__pick__(cities) ``` Note how the `city` method is decorated with `@with_datasets("cities")` and how, consequently, it receives the said dataset as parameter. The call to `__pick__` just selects a random entry from `cities`. ## Matching a criterium `CitiesFromCountry` exploits the custom picker to return only cities from a given country. A first implementation could just discard cities from any other country, getting slower with increasing bad luck. ```python from faker_datasets import Provider, add_dataset, with_datasets @add_dataset("cities", "cities.json") class CitiesFromCountry(Provider): @with_datasets("cities") def city(self, cities, country_name): while True: city = self.__pick__(cities) if city["country_name"] == country_name: return city ``` It's better to limit to the number of attempts though otherwise if `country_name` is misspelled the picker would enter in an infinite loop. ```python from faker_datasets import Provider, add_dataset, with_datasets @add_dataset("cities", "cities.json") class CitiesFromCountry(Provider): @with_datasets("cities") def city(self, cities, country_name, max_attempts=10000): while max_attempts: city = self.__pick__(cities) if city["country_name"] == country_name: return city max_attempts -= 1 raise ValueError("Run out of attempts") ``` Or, with same results, use the `match=` and `max_attempts=` parameters of `__pick__`. ```python from faker_datasets import Provider, add_dataset, with_datasets @add_dataset("cities", "cities.json") class CitiesFromCountry(Provider): @with_datasets("cities") def city(self, cities, country_name): # match tells to __picker__ whether the city is good or not match = lambda city: city["country_name"] == country_name return self.__pick__(cities, match=match, max_attempts=10000) ``` If you know ahead which country you are interested in, say Afghanistan, you can use the `@with_match` picker decorator. It produces a new index of only matching entries and the picking speed is again constant and independent from bad luck. ```python from faker_datasets import Provider, add_dataset, with_datasets, with_match @add_dataset("cities", "cities.json") class CitiesFromCountry(Provider): @with_datasets("cities") @with_match(lambda city: city["country_name"] == "Afghanistan") def afghan_city(self, cities): return self.__pick__(cities) ``` At such conditions though it's maybe better to massage your dataset and leave only the entries matching your criteria. ## Using multiple datasets `CitiesAndCountries` fuses two datasets for more advanced matches. Note how `@add_dataset` makes multiple datasets available to the provider and `@with_datasets` passes them to the given picker. ```python from faker_datasets import Provider, add_dataset, with_datasets, with_match @add_dataset("cities", "cities.json") @add_dataset("countries", "countries.json") class CitiesAndCountries(Provider): @with_datasets("cities", "countries") def city_by_region(self, cities, countries, region): def match(city): # Given a city, find its country info in the countries dataset country = next(country for country in countries if country["name"] == city["country_name"]) # Check that the country is in the region of interest return country["region"] == region return self.__pick__(cities, match=match, max_attempts=10000) ``` The picker performs the data mix and match so that the region request is satisfied or an error is signaled. ## Summary You use `@add_dataset` to attach a dataset to your provider, if you specify a `picker=` parameter you'll get for free a random picker of entries. The more datasets you need, the more `@add_dataset` you can use. If you have special needs you can define the pickers for yourself, each using what datasets are most appropriate among those made available with `@add_dataset`. You can add as many pickers as you need. A picker can use `match=` and `max_attempts=` to make the generation respect some useful criteria.


نیازمندی

مقدار نام
- faker


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl faker-datasets-0.1.0:

    pip install faker-datasets-0.1.0.whl


نصب پکیج tar.gz faker-datasets-0.1.0:

    pip install faker-datasets-0.1.0.tar.gz