معرفی شرکت ها


fairsearchdeltr-1.0.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A Python library for disparate exposure in ranking (a learning to rank approach)
ویژگی مقدار
سیستم عامل -
نام فایل fairsearchdeltr-1.0.2
نام fairsearchdeltr
نسخه کتابخانه 1.0.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Ivan Kitanovski
ایمیل نویسنده ivan.kitanovski@gmail.com
آدرس صفحه اصلی https://github.com/fair-search/fairsearchdeltr-python
آدرس اینترنتی https://pypi.org/project/fairsearchdeltr/
مجوز Apache 2.0
# Fair search DELTR for Python [![image](https://img.shields.io/pypi/status/fairsearchdeltr.svg)](https://pypi.org/project/fairsearchdeltr/) [![image](https://img.shields.io/pypi/v/fairsearchdeltr.svg)](https://pypi.org/project/fairsearchdeltr/) [![image](https://img.shields.io/pypi/pyversions/fairsearchdeltr.svg)](https://pypi.org/project/fairsearchdeltr/) [![image](https://img.shields.io/pypi/l/fairsearchdeltr.svg)](https://pypi.org/project/fairsearchdeltr/) [![image](https://img.shields.io/pypi/implementation/fairsearchdeltr.svg)](https://pypi.org/project/fairsearchdeltr/) This is the Python library that implements the [DELTR](https://arxiv.org/pdf/1805.08716.pdf) model for fair ranking. ## Installation To install `fairsearchdeltr`, simply use `pip` (or `pipenv`): ```bash pip install fairsearchdeltr ``` And, that's it! ## Using it in your code You need to import the class from the package first: ```python from fairsearchdeltr import Deltr ``` ### Train a model You need to train the model before it can rank documents. ```python # import other helper libraries import pandas as pd from io import StringIO # load some train data (this is just a sample - more is better) train_data_raw = """q_id,doc_id,gender,score,judgment 1,1,1,0.962650646167003,1 1,2,0,0.940172822166108,0.98 1,3,0,0.925288002880488,0.96 1,4,1,0.896143226020877,0.94 1,5,0,0.89180775633204,0.92 1,6,0,0.838704766545679,0.9 """ train_data = pd.read_csv(StringIO(train_data_raw)) # setup the DELTR object protected_feature = "gender" # column name of the protected attribute (index after query and document id) gamma = 1 # value of the gamma parameter number_of_iterations = 10000 # number of iterations the training should run standardize = True # let's apply standardization to the features # create the Deltr object dtr = Deltr(protected_feature, gamma, number_of_iterations, standardize=standardize) # train the model dtr.train(train_data) >> array([0.02527054, 0.07692437]) # your run should have approximately same results ``` ### Use the model to rank Now, you can use the obtained model to rank some data. ```python # load some test/prediction data prediction_data_raw = """q_id,doc_id,gender,score 1,7,0,0.9645 1,8,0,0.9524 1,9,0,0.9285 1,10,0,0.8961 1,11,1,0.8911 1,12,1,0.8312 """ prediction_data = pd.read_csv(StringIO(prediction_data_raw)) # use the model to rank the data dtr.rank(prediction_data) >> doc_id gender judgement 4 11 1 0.074849 5 12 1 0.063770 0 7 0 0.063486 1 8 0 0.061248 2 9 0 0.056828 3 10 0 0.050836 # the result will be a re-ranked dataframe ``` The library contains sufficient code documentation for each of the functions. ### Checking the model a bit deeper You can check how the training of the model progressed using a special property called `log`. ```python dtr.log >> [<TrainStep [1553844278383,[0.01926469 0.00976336],[[-0.00125304 -0.0014605 ] [-0.00125304 -0.0014605 ] [-0.00125304 -0.0014605 ] [-0.00125304 -0.0014605 ] [-0.00125304 -0.0014605 ] [-0.00125304 -0.0014605 ]],5.999620187652397,0.0]>, ...] ``` The `log` returns a list of objects from the `fairsearchdeltr.models.TrainStep` class. The class is a representation of the parameters in each step of the training. Contains a `timestamp`, `omega`, `omega_gradient`, `loss`, `loss_standard`, `loss_exposure`. ## Development 1. Clone this repository `git clone https://github.com/fair-search/fairsearchdeltr-python` 2. Change directory to the directory where you cloned the repository `cd WHERE_ITS_DOWNLOADED/fairsearchdeltr-python` 3. Use any IDE to work with the code ## Testing Just run: ``` python setup.py test ``` ## Credits The DELTR algorithm is described in this paper: * Meike Zehlike, Gina-Theresa Diehn, Carlos Castillo. "[Reducing Disparate Exposure in Ranking: A Learning to Rank Approach](https://doi.org/10.1145/3132847.3132938)." preprint arXiv:1805.08716 (2018). This library was developed by [Ivan Kitanovski](http://ivankitanovski.com/) based on the paper. See the [license](https://github.com/fair-search/fairsearch-deltr-python/blob/master/LICENSE) file for more information. For any questions contact [Mieke Zehlike](https://de.linkedin.com/in/meike-zehlike-366bba131) ## See also You can also see the [DELTR for ElasticSearch](https://github.com/fair-search/fairsearch-deltr-for-elasticsearch) and [DELTR Java library](https://github.com/fair-search/fairsearchdeltr-java).


زبان مورد نیاز

مقدار نام
>=3.0 Python


نحوه نصب


نصب پکیج whl fairsearchdeltr-1.0.2:

    pip install fairsearchdeltr-1.0.2.whl


نصب پکیج tar.gz fairsearchdeltr-1.0.2:

    pip install fairsearchdeltr-1.0.2.tar.gz