معرفی شرکت ها


fairml-0.1.1.5rc8


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Module for measuring feature dependence for black-box models
ویژگی مقدار
سیستم عامل -
نام فایل fairml-0.1.1.5rc8
نام fairml
نسخه کتابخانه 0.1.1.5rc8
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Julius Adebayo
ایمیل نویسنده julius.adebayo@gmail.com
آدرس صفحه اصلی https://github.com/adebayoj/fairml
آدرس اینترنتی https://pypi.org/project/fairml/
مجوز MIT
FairML: Auditing Black-Box Predictive Models ============================================ FairML is a python toolbox auditing the machine learning models for bias. |Build Status| |Coverage Status| |GitHub license| |GitHub issues| .. figure:: fairml/master/doc/images/logo2-small.png :alt: Logo Logo Description ~~~~~~~~~~~ Predictive models are increasingly been deployed for the purpose of determining access to services such as credit, insurance, and employment. Despite societal gains in efficiency and productivity through deployment of these models, potential systemic flaws have not been fully addressed, particularly the potential for unintentional discrimination. This discrimination could be on the basis of race, gender, religion, sexual orientation, or other characteristics. This project addresses the question: how can an analyst determine the relative significance of the inputs to a black-box predictive model in order to assess the model’s fairness (or discriminatory extent)? We present FairML, an end-to-end toolbox for auditing predictive models by quantifying the relative significance of the model’s inputs. FairML leverages model compression and four input ranking algorithms to quantify a model’s relative predictive dependence on its inputs. The relative significance of the inputs to a predictive model can then be used to assess the fairness (or discriminatory extent) of such a model. With FairML, analysts can more easily audit cumbersome predictive models that are difficult to interpret.s of black-box algorithms and corresponding input data. Installation ~~~~~~~~~~~~ You can pip install this package, via github - i.e. this repo - using the following commands: pip install https://github.com/adebayoj/fairml/archive/master.zip or you can clone the repository doing: git clone https://github.com/adebayoj/fairml.git sudo python setup.py install Methodology ~~~~~~~~~~~ .. figure:: fairml/doc/images/fairml_methodology_picture.png :alt: Methodology Methodology Code Demo ~~~~~~~~~ Now we show how to use the fairml python package to audit a black-box model. .. code:: python # First we import modules for model building and data processing. import pandas as pd import numpy as np from sklearn.linear_model import LogisticRegression """ Now, we import the two key methods from fairml. audit_model takes: - (required) black-box function, which is the model to be audited - (required) sample_data to be perturbed for querying the function. This has to be a pandas dataframe with no missing data. - other optional parameters that control the mechanics of the auditing process, for example: - number_of_runs : number of iterations to perform - interactions : flag to enable checking model dependence on interactions. audit_model returns an overloaded dictionary where keys are the column names of input pandas dataframe and values are lists containing model dependence on that particular feature. These lists of size number_of_runs. """ from fairml import audit_model from fairml import plot_generic_dependence_dictionary Above, we provide a quick explanation of the key fairml functionality. Now we move into building an example model that we'd like to audit. .. code:: python # read in the propublica data to be used for our analysis. propublica_data = pd.read_csv( filepath_or_buffer="./doc/example_notebooks/" "propublica_data_for_fairml.csv") # create feature and design matrix for model building. compas_rating = propublica_data.score_factor.values propublica_data = propublica_data.drop("score_factor", 1) # this is just for demonstration, any classifier or regressor # can be used here. fairml only requires a predict function # to diagnose a black-box model. # we fit a quick and dirty logistic regression sklearn # model here. clf = LogisticRegression(penalty='l2', C=0.01) clf.fit(propublica_data.values, compas_rating) Now let's audit the model built with FairML. .. code:: python # call audit model with model total, _ = audit_model(clf.predict, propublica_data) # print feature importance print(total) # generate feature dependence plot fig = plot_dependencies( total.get_compress_dictionary_into_key_median(), reverse_values=False, title="FairML feature dependence" ) plt.savefig("fairml_ldp.eps", transparent=False, bbox_inches='tight') The demo above produces the figure below. .. figure:: fairml/master/doc/images/feature_dependence_plot_fairml_propublica_linear_direct_small.png :alt: Example Output Example Output | Feel free to email the authors with any questions: | `Julius Adebayo GitHub <https://github.com/adebayoj>`__ julius.adebayo@gmail.com Data ~~~~ The data used for the demo above is available in the repo at: /doc/example\_notebooks/propublica\_data\_for\_fairml.csv .. |Build Status| image:: https://travis-ci.org/adebayoj/fairml.svg?branch=master :target: https://travis-ci.org/adebayoj/fairml/ .. |Coverage Status| image:: https://coveralls.io/repos/github/adebayoj/fairml/badge.svg?branch=master :target: https://coveralls.io/github/adebayoj/fairml?branch=master .. |GitHub license| image:: https://img.shields.io/badge/license-MIT-blue.svg :target: https://raw.githubusercontent.com/adebayoj/fairml/master/LICENSE .. |GitHub issues| image:: https://img.shields.io/github/issues/adebayoj/fairml.svg :target: https://github.com/adebayoj/fairml/issues


نحوه نصب


نصب پکیج whl fairml-0.1.1.5rc8:

    pip install fairml-0.1.1.5rc8.whl


نصب پکیج tar.gz fairml-0.1.1.5rc8:

    pip install fairml-0.1.1.5rc8.tar.gz