معرفی شرکت ها


fairlib-0.1.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Unified framework for assessing and improving fairness.
ویژگی مقدار
سیستم عامل -
نام فایل fairlib-0.1.0
نام fairlib
نسخه کتابخانه 0.1.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Xudong Han
ایمیل نویسنده xudongh1@student.unimelb.edu.au
آدرس صفحه اصلی https://github.com/HanXudong/fairlib
آدرس اینترنتی https://pypi.org/project/fairlib/
مجوز -
# *fairlib* [*fairlib*](https://github.com/HanXudong/fairlib) is a Python framework for assessing and improving fairness. Built-in algorithms can be applied to text inputs, structured inputs, and image inputs. The *fairlib* package includes metrics for fairness evaluation, [algorithms for bias mitigation](https://hanxudong.github.io/fairlib/supported_bias_mitigation_algorithms.html), and functions for analysis. For those who want to start with *fairlib* now, you can try our [Colab Tutorial](https://colab.research.google.com/github/HanXudong/fairlib/blob/main/tutorial/fairlib_demo.ipynb), which provides a gentle introduction to the concepts and capabilities. [The tutorials and other notebooks](https://hanxudong.github.io/fairlib/tutorial_interactive_demos.html) offer a deeper introduction. The [complete API](https://hanxudong.github.io/fairlib) is also available. ## Installation *fairlib* currently requires Python3.7+ and [Pytorch](https://pytorch.org) 1.10 or higher. Dependencies of the core modules are listed in [`requirements.txt`](https://github.com/HanXudong/fairlib/blob/main/requirements.txt). We *strongly* recommend using a [venv](https://docs.python.org/3/library/venv.html) or [conda](https://www.anaconda.com/) environment for installation. **Standard Installation** If you do not need further modifications, you can install it with: ```bash # Start a new virtual environment: conda create -n fairlib python=3.7 conda activate fairlib pip install fairlib ``` **Development Installation** To set up a development environment, run the following commands to clone the repository and install *fairlib*: ```bash git clone https://github.com/HanXudong/fairlib.git ~/fairlib cd ~/fairlib python setup.py develop ``` **Benchmark Datasets** Please refer to [data/README.md](https://github.com/HanXudong/fairlib/blob/main/data/README.md) for a list of fairness benchmark datasets. ## Usage The full description of *fairlib* usages can be found in [*fairlib* cheat sheet](https://hanxudong.github.io/fairlib/tutorial_usage.html) and API reference. Here are the most basic examples. - *fairlib* can be run from the command line: ```bash python fairlib --exp_id EXP_NAME ``` - *fairlib* can be imported as a package ```python from fairlib.base_options import options from src import networks config_file = 'opt.yaml' # Get options state = options.get_state(conf_file=config_file) # Init the model model = networks.get_main_model(state) # Training with debiasing model.train_self() ``` ## Model Selection and Fairness Evaluation Besides the classical loss- and performance-based model selection, we provide performance-fairness trade-off based model selection (see the paper below). Please see [this tutorial](https://hanxudong.github.io/fairlib/tutorial_notebooks/tutorial_Moji_demo.html) for an example of loading training history, performing model selections based on different strategies, and creating basic plots. Moreover, [interactive plots](https://hanxudong.github.io/fairlib/tutorial_notebooks/tutorial_interactive_plots.html) are also supported, which can be used for analysis. ## Known issues and limitations None are known at this time. ## Getting help If you have any problem with our code or have some suggestions, including the future feature, feel free to contact - Xudong Han (xudongh1@student.unimelb.edu.au) or describe it in Issues. ## Paper [fairlib: A Unified Framework for Assessing and Improving Classification Fairness](https://arxiv.org/abs/2205.01876) Cite Us ``` @article{han2022fairlib, title={fairlib: A Unified Framework for Assessing and Improving Classification Fairness}, author={Han, Xudong and Shen, Aili and Li, Yitong and Frermann, Lea and Baldwin, Timothy and Cohn, Trevor}, journal={arXiv preprint arXiv:2205.01876}, year={2022} } ``` ## Contributing We appreciate all contributions. If you are planning to contribute back bug-fixes, please do so without any further discussion. If you plan to contribute new features, utility functions or extensions, please first open an issue and discuss the feature with us. ## License This project is distributed under the terms of the [APACHE LICENSE, VERSION 2.0](https://www.apache.org/licenses/LICENSE-2.0). The license applies to all files in the [GitHub repository](http://github.com/HanXudong/fairlib) hosting this file. ## Acknowledgments * https://github.com/HanXudong/Decoupling_Adversarial_Training_for_Fair_NLP * https://github.com/HanXudong/Diverse_Adversaries_for_Mitigating_Bias_in_Training * https://github.com/SsnL/dataset-distillation * https://github.com/huggingface/torchMoji * https://github.com/mhucka/readmine * https://github.com/yanaiela/demog-text-removal * https://github.com/lrank/Robust_and_Privacy_preserving_Text_Representations * https://github.com/yuji-roh/fairbatch * https://github.com/shauli-ravfogel/nullspace_projection * https://github.com/AiliAili/contrastive_learning_fair_representations * https://github.com/AiliAili/Difference_Mean_Fair_Models


نیازمندی

مقدار نام
- tqdm
- numpy
- docopt
- pandas
- scikit-learn
- torch
- PyYAML
- seaborn
- matplotlib
- pickle5
- transformers
- sacremoses
- sentencepiece


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl fairlib-0.1.0:

    pip install fairlib-0.1.0.whl


نصب پکیج tar.gz fairlib-0.1.0:

    pip install fairlib-0.1.0.tar.gz