معرفی شرکت ها


fairiskdata-1.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

This package facilitates fetching and handling data related to COVID and estimation of related excess mortality
ویژگی مقدار
سیستم عامل -
نام فایل fairiskdata-1.0
نام fairiskdata
نسخه کتابخانه 1.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Catarina Pires, Diana Gomes, David Ribeiro, Duarte Folgado, Ricardo Santos, Telmo Barbosa
ایمیل نویسنده catarina.pires@fraunhofer.pt, diana.gomes@fraunhofer.pt, david.ribeiro@fraunhofer.pt, duarte.folgado@fraunhofer.pt, ricardo.santos@fraunhofer.pt, telmo.barbosa@fraunhofer.pt
آدرس صفحه اصلی https://github.com/fraunhoferportugal/fairisk
آدرس اینترنتی https://pypi.org/project/fairiskdata/
مجوز Creative Commons BY-NC-SA 4.0
# FAIRisk | Improving risk estimation with open resources FAIRisk combines open-source globally available data related with risk scales and country preparedness for epidemic crisis with post-COVID-19 data. It aims to facilitate the creation of preventive insights at country-level and the suggestion of improvements to current risk modelling strategies, and assist the work of the scientific community and decision-makers dealing with COVID-19 (or related) crisis. This repository addresses data interoperability challenges of fetching and combining several openly available sources of multimodal data, so these can be coherently used from a centralized data model. This model was designed bearing FAIR principles and EU's open data guidelines in mind to promote an adequate, well-documented and simplified use of the combined data. ### Approach A semantic data model was defined, following the analysis of several relevant sources, in order to typify and indentify the most relevant concepts, while attempting to maximize its generalization. Data from 6 different sources was organized and merged in a single data model, where each country entity is represented by up to 6 categories: - Demographics: population by age group. - Indicators: raw indicators' data measured for each country. - Scores: indexes, scales, or scores that assist the comparison of qualitative or estimated parameters across countries. - Mortality: count of deaths by age group. - COVID-19: number of cases, deaths, tests, ICU patients, hospitalizations, vaccinations, and stringency index due to the COVID-19 pandemic. - Mobility: statistics of citizens movement estimations. Check out our [architecture documentation](https://github.com/fraunhoferportugal/fairisk/blob/main/docs/index.md) for more details. ### Getting started Jump to our [getting started guide](https://github.com/fraunhoferportugal/fairisk/blob/main/docs/GettingStarted.md). Data exploration, visualization, and export is also possible using [our simple streamlit application](https://github.com/fraunhoferportugal/fairisk/blob/main/docs/Streamlit.md). Also, you may read our [full documentation](https://github.com/fraunhoferportugal/fairisk/blob/main/docs/index.md). ### License All visualizations and code available in this repository are licensed under the [Creative Commons BY-NC-SA 4.0 license](https://creativecommons.org/licenses/by-nc-sa/4.0/). All data fetched by the methods available in this repository was produced by third-parties and is subject to the license terms from the original third-party authors. The sources from which data was fetched are kept and made available as metadata at all stages. Sources are also detailed [here](https://github.com/fraunhoferportugal/fairisk/blob/main/docs/SourceDatasets.md). You should always check the license of all third-party data before use. ### Funding The authors would like to acknowledge the financial support obtained from EOSCsecretariat.eu. EOSCsecretariat.eu has received funding from the European Union's Horizon Programme call H2020-INFRAEOSC-05-2018-2019, grant Agreement number 831644. ### Authors These resources were developed by [Fraunhofer AICOS](https://www.aicos.fraunhofer.pt/en/home.html). **Development team**: Diana Gomes (diana.gomes@fraunhofer.pt), Catarina Pires (catarina.pires@fraunhofer.pt), David Ribeiro (david.ribeiro@fraunhofer.pt), Duarte Folgado (duarte.folgado@fraunhofer.pt), Ricardo Santos (ricardo.santos@fraunhofer.pt), Telmo Barbosa (telmo.barbosa@fraunhofer.pt).


نیازمندی

مقدار نام
==0.7.2 country-converter
==1.3.4 mergedeep
==3.17.2 simplejson
==2.2.0 pyjstat
==1.0.0 requests-futures
==4.9.5 hdx-python-api


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl fairiskdata-1.0:

    pip install fairiskdata-1.0.whl


نصب پکیج tar.gz fairiskdata-1.0:

    pip install fairiskdata-1.0.tar.gz