معرفی شرکت ها


faculty-xval-0.1.0rc1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Cross validation of machine-learning models on Faculty platform.
ویژگی مقدار
سیستم عامل -
نام فایل faculty-xval-0.1.0rc1
نام faculty-xval
نسخه کتابخانه 0.1.0rc1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Faculty
ایمیل نویسنده info@faculty.ai
آدرس صفحه اصلی https://github.com/facultyai/faculty-xval
آدرس اینترنتی https://pypi.org/project/faculty-xval/
مجوز -
# faculty-xval Cross validation of machine-learning models on Faculty platform. At present, the package mostly offers a way to cross validate models in parallel by means of Faculty jobs. To access the functionality one makes use of the class: ```python faculty_xval.validation.JobsCrossValidator ``` Additional information is found in the example notebooks provided. Please have a look at the section `Try out the examples` below. The package supports `keras` and `sklearn` models. Whilst one can write custom models that are compatible with `faculty-xval`, no guarantee is given that the package handles these situations correctly, in particular because of issues concerning the randomisation of weights. Two sets of installation instructions are provided below: - If you would like to simply use `faculty-xval`, please follow the `User installation instructions`. - If you would like to develop `faculty-xval` further, please follow the `Developer installation instructions`. ## User installation instructions ### Create an environment In your project on Faculty platform, create an environment named `faculty_xval`. In the `PYTHON` section, select `Python 3` and `pip` from the dropdown menus. Then, type `faculty-xval` in the text box, and click on the `ADD` button. The environment installs the package `faculty-xval`, and should be applied on every server that you create; this includes both interactive servers and job servers, as explained next. ### Create a job definition Create a new job definition named `cross_validation`. In the `COMMAND` section, paste the following: `faculty_xval_jobs_xval $IN_PATHS` Then, add a `PARAMETER` with the name `IN_PATHS`, and ensure that the `Make field mandatory` box is checked. Finally, under `SERVER SETTINGS`, add `faculty_xval` to the `ENVIRONMENTS` section. For cross-validation jobs that are computationally intensive, we recommend using dedicated servers as opposed to running on shared infrastructure. To achieve this, click on `Large and GPU servers` under `SERVER RESOURCES`, and select an appropriate server type from the dropdown menu. Remember to click `SAVE` when you are finished. ## Developer installation instructions ### Select a username Before beginning the installation process, pick an appropriate username, such as `foo`. This does not necessarily need to match your Faculty platform username. In the following instructions, your selected username will be referred to as `<USER_NAME>`. ##### Clone the repository Create the folder `/project/<USER_NAME>`. Then, run the commands: ```bash cd /project/<USER_NAME> git clone https://github.com/facultyai/faculty-xval.git ``` ### Create an environment Next, create an environment in your project named `faculty_xval_<USER_NAME>`. In this environment, under `SCRIPTS`, paste in the following code to the `BASH` section, remembering to change the `USER_NAME` definition on the second line to your selected `<USER_NAME>`: ```bash # Remember to change username! USER_NAME=<USER_NAME> # Install faculty-xval from local repository. pip install /project/$USER_NAME/faculty-xval/ # Turn USER_NAME into an environment variable. echo "export USER_NAME=$USER_NAME" > /etc/faculty_environment.d/app.sh if [[ -d /etc/service/jupyter ]] ; then sudo sv restart jupyter fi ``` This environment should be applied on every server that you create; this includes both 'normal' interactive servers and job servers, as explained next. ### Create a job definition Next, create a new job definition named `cross_validation_<USER_NAME>`. In the `COMMAND` section, paste the following: `faculty_xval_jobs_xval $in_paths` Then, add a `PARAMETER` with the name `in_paths`, and ensure that the `Make field mandatory` box is checked. Finally, under `SERVER SETTINGS`, add `faculty_xval_<USER_NAME>` to the `ENVIRONMENTS` section. For cross-validation jobs that are computationally intensive, we recommend using dedicated servers as opposed to running in the cluster. To achieve this, click on `Large and GPU servers` under `SERVER RESOURCES`, and select an appropriate server type from the dropdown menu. Remember to click `SAVE` when you are finished. ## Try out the examples Please clone this repository. Examples of cross validation with `faculty-xval` for the different types of model are provided in the directories `examples/keras` and `examples/sklearn`. Usage instructions are then divided in two notebooks: - `jobs_cross_validator_run.ipynb` loads the data, instantiates the model, and starts a Faculty job that carries out the cross validation. - `jobs_cross_validator_analyse.ipynb` gathers the results from the cross validation, reloads the target data, and calculates the model accuracy over multiple train-test splits. Note that the example notebooks must be run in the order just defined.


نیازمندی

مقدار نام
- click
- faculty
>=2.2.4 keras
- numpy
- scikit-learn
- tensorflow


نحوه نصب


نصب پکیج whl faculty-xval-0.1.0rc1:

    pip install faculty-xval-0.1.0rc1.whl


نصب پکیج tar.gz faculty-xval-0.1.0rc1:

    pip install faculty-xval-0.1.0rc1.tar.gz