معرفی شرکت ها


factor-pricing-model-universe-2023.0.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Package to build universes for factor pricing model
ویژگی مقدار
سیستم عامل -
نام فایل factor-pricing-model-universe-2023.0.0
نام factor-pricing-model-universe
نسخه کتابخانه 2023.0.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Factor Pricing Model
ایمیل نویسنده factor.pricing.model@gmail.com
آدرس صفحه اصلی https://github.com/factorpricingmodel/factor-pricing-model-universe
آدرس اینترنتی https://pypi.org/project/factor-pricing-model-universe/
مجوز MIT
# Factor Pricing Model Universe <p align="center"> <a href="https://github.com/factorpricingmodel/factor-pricing-model-universe/actions?query=workflow%3ACI"> <img src="https://img.shields.io/github/workflow/status/factorpricingmodel/factor-pricing-model-universe/CI/main?label=CI&logo=github&style=flat-square" alt="CI Status" > </a> <a href="https://factor-pricing-model-universe.readthedocs.io"> <img src="https://img.shields.io/readthedocs/factor-pricing-model-universe.svg?logo=read-the-docs&logoColor=fff&style=flat-square" alt="Documentation Status"> </a> <a href="https://codecov.io/gh/factorpricingmodel/factor-pricing-model-universe"> <img src="https://img.shields.io/codecov/c/github/factorpricingmodel/factor-pricing-model-universe.svg?logo=codecov&logoColor=fff&style=flat-square" alt="Test coverage percentage"> </a> </p> <p align="center"> <a href="https://python-poetry.org/"> <img src="https://img.shields.io/badge/packaging-poetry-299bd7?style=flat-square&logo=" alt="Poetry"> </a> <a href="https://github.com/ambv/black"> <img src="https://img.shields.io/badge/code%20style-black-000000.svg?style=flat-square" alt="black"> </a> <a href="https://github.com/pre-commit/pre-commit"> <img src="https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white&style=flat-square" alt="pre-commit"> </a> </p> <p align="center"> <a href="https://pypi.org/project/factor-pricing-model-universe/"> <img src="https://img.shields.io/pypi/v/factor-pricing-model-universe.svg?logo=python&logoColor=fff&style=flat-square" alt="PyPI Version"> </a> <img src="https://img.shields.io/pypi/pyversions/factor-pricing-model-universe.svg?style=flat-square&logo=python&amp;logoColor=fff" alt="Supported Python versions"> <img src="https://img.shields.io/pypi/l/factor-pricing-model-universe.svg?style=flat-square" alt="License"> </p> Package to build universes for factor pricing model. For further details, please refer to the [documentation](https://factor-pricing-model-universe.readthedocs.io/en/latest/) ## Installation Install this via pip (or your favourite package manager): `pip install factor-pricing-model-universe` ## Usage The library contains the pipelines to build the universe. You can run the pipelines interactively in Jupyter Notebook. ```python from fpm_universe import pipeline ``` Alternatively, for scheduled runs, you can create a configuration and run the command line entry point to create the universe. ### Configuration The configuration is in yaml format and contains a few inputs | Name | Description | | :----------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | | `output_filename` | Output filename | | `intermediate_directory` | Intermediate directory to export the pipeline outputs | | `start_datetime` | Start datetime of the universe | | `last_datetime` | Last datetime of the universe | | `frequency` | Frequency of the universe. For further details, please see the "Offset aliases" in pandas [documentation](https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases) | | `pipeline` | List of pipelines to filter the universe | | `data` | Defines the data used by pipeline, or referred by yaml tag `!data` | Each pipeline returns a pandas dataframe indicating if the instrument is included into the universe on the specified date / time. For example, the pipeline returns the following dataframe ``` +------------+--------+-------+ | date | AAPL | GOOGL | +------------+--------+-------+ | 2022-11-17 | True | False | +------------+--------+-------+ | 2022-11-18 | True | True | +------------+--------+-------+ ``` and it indicates AAPL is included in the universe on both 2022-11-17 and 2022-11-18 while GOOGL only on 2022-11-18. By default, the pipeline functions are imported from module `fpm_universe.pipeline`. Each data defines the method to retrieve from the source, or the operator on the source data. The return type of each data is unconstrained. It can be a json-like dict, a list, a pandas series, or even a pandas dataframe. In the configuration, Each data can be referred by yaml tag `!data`, and it is loaded in lazy only when it is referred by another data object or a pipeline. ### Command The entry point `factor-pricing-model-universe` is to generate the universe regarding the given configuration to the destination, with dynamically passing the parameters to format the configuration. The arguments of the entry point are | Argument | Description | | :--------------------: | :----------------------------------------------: | | `-c, --config TEXT` | Required. Configuration file path. | | `-p, --parameter TEXT` | Parameters to be formatted in the configuration. | For example, given the configuration as follows, ``` output_filename: "{output_directory}/{date}.parquet" intermediate_directory: "{output_directory}/{date}" start_datetime: "2015-01-01" last_datetime: "{date}" frequency: "B" pipeline: - name: range_validity function: range_validity parameters: values: !data initial_validity data: symbols: function: jq_compile parameters: json_filename: "{data_directory}/index/sp500/default/{date}.json" pattern: "[.[] | .tickers[]] | sort | unique | .[]" initial_validity: function: jq_compile parameters: json_filename: "{data_directory}/listings/{date}.json" pattern: ".[] | {{ symbol: .symbol, valid_start_datetime: .ipoDate, valid_last_datetime: .delistingDate }}" includes: symbol: !data symbols ``` and run the following command ``` factor-pricing-model-universe \ --config <path> \ --parameter output_directory=$HOME/output \ --parameter data_directory=$HOME/data \ --parameter date=2022-10-20 ``` the universe dataframe is output to `$HOME/output/2022-10-20.parquet` (formatted with the parameter `output_directory` and `date`).


نیازمندی

مقدار نام
>=5.0,<6.0 Sphinx
>=0.3.6,<0.4.0 insipid-sphinx-theme
>=1.3.0,<2.0.0 jq
>=0.18,<0.19 myst-parser
>=1.3.5,<1.4.0 pandas
>=10.0.1,<11.0.0 pyarrow
>=6.0,<7.0 pyyaml


زبان مورد نیاز

مقدار نام
>=3.8,<4.0 Python


نحوه نصب


نصب پکیج whl factor-pricing-model-universe-2023.0.0:

    pip install factor-pricing-model-universe-2023.0.0.whl


نصب پکیج tar.gz factor-pricing-model-universe-2023.0.0:

    pip install factor-pricing-model-universe-2023.0.0.tar.gz