معرفی شرکت ها


factor-pricing-model-risk-model-2023.3.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Package to build risk models for factor pricing model
ویژگی مقدار
سیستم عامل -
نام فایل factor-pricing-model-risk-model-2023.3.0
نام factor-pricing-model-risk-model
نسخه کتابخانه 2023.3.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Factor Pricing Model
ایمیل نویسنده factor.pricing.model@gmail.com
آدرس صفحه اصلی https://github.com/factorpricingmodel/factor-pricing-model-risk-model
آدرس اینترنتی https://pypi.org/project/factor-pricing-model-risk-model/
مجوز MIT
# Factor Pricing Model Risk Model <p align="center"> <a href="https://github.com/factorpricingmodel/factor-pricing-model-risk-model/actions?query=workflow%3ACI"> <img src="https://github.com/factorpricingmodel/factor-pricing-model-risk-model/actions/workflows/ci.yml/badge.svg" alt="CI Status" > </a> <a href="https://factor-pricing-model-risk-model.readthedocs.io"> <img src="https://img.shields.io/readthedocs/factor-pricing-model-risk-model.svg?logo=read-the-docs&logoColor=fff&style=flat-square" alt="Documentation Status"> </a> <a href="https://codecov.io/gh/factorpricingmodel/factor-pricing-model-risk-model"> <img src="https://img.shields.io/codecov/c/github/factorpricingmodel/factor-pricing-model-risk-model.svg?logo=codecov&logoColor=fff&style=flat-square" alt="Test coverage percentage"> </a> </p> <p align="center"> <a href="https://python-poetry.org/"> <img src="https://img.shields.io/badge/packaging-poetry-299bd7?style=flat-square&logo=" alt="Poetry"> </a> <a href="https://github.com/ambv/black"> <img src="https://img.shields.io/badge/code%20style-black-000000.svg?style=flat-square" alt="black"> </a> <a href="https://github.com/pre-commit/pre-commit"> <img src="https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white&style=flat-square" alt="pre-commit"> </a> </p> <p align="center"> <a href="https://pypi.org/project/factor-pricing-model-risk-model/"> <img src="https://img.shields.io/pypi/v/factor-pricing-model-risk-model.svg?logo=python&logoColor=fff&style=flat-square" alt="PyPI Version"> </a> <img src="https://img.shields.io/pypi/pyversions/factor-pricing-model-risk-model.svg?style=flat-square&logo=python&amp;logoColor=fff" alt="Supported Python versions"> <img src="https://img.shields.io/pypi/l/factor-pricing-model-risk-model.svg?style=flat-square" alt="License"> </p> Package to build risk model for factor pricing model. For further details, please refer to the [documentation](https://factor-pricing-model-risk-model.readthedocs.io/en/latest/) ## Installation Install this via pip (or your favourite package manager): `pip install factor-pricing-model-risk-model` ## Usage The library contains the pipelines to build the risk model. You can run the pipelines interactively in Jupyter Notebook. ```python import fpm_risk_model ``` ## Objective The project provides frameworks to create multi-factor risk model on an "enterprise-like" level. The target audiences are researchers, developers and fund management looking for flexibility in creating risk models. ## Features Basically, there are three major features provided in the library - Factor risk model creation - Covariance estimator - Tracking risk model accuracy ## Factor risk model The factor risk model is created by fitting instrument returns (which could be weekly, daily, or even higher granularity) and other related parameters into the model, and its products are factor exposures, factor returns, factor covariance, and residual returns (idiosyncratic returns). For example, to create a simple statistical PCA risk model, ``` from fpm_risk_model.statistics import PCA risk_model = PCA(n_components=5) risk_model.fit(X=returns) # Get fitted factor exposures risk_model.factor_exposures ``` Then, the risk model can be transformed by the returns of a larger homogeneous universe. ``` risk_model.transform(y=model_returns) ``` For further details, please refer to the [section](https://factor-pricing-model-risk-model.readthedocs.io/en/latest/risk_model/factor_risk_model.html) in the documentation. ## Covariance estimation Currently, covariance estimation is supported in factor risk model, and the estimation depends on the fitted results. For example, a risk model transformed by model universe returns can derive the pairwise covariance and correlation for the model universe. ``` risk_model.transform(y=model_returns) cov = risk_model.cov() corr = risk_model.corr() ``` The following features will be supported in the near future - Covariance shrinkage - Covariance estimation from returns For further details, please refer to the [section](https://factor-pricing-model-risk-model.readthedocs.io/en/latest/risk_model/covariance.html) in the documentation. ## Tracking risk model accuracy The library also focuses on the predictability interpretation of the risk model, and provides a few benchmarks to examine the following metrics - [Bias](https://factor-pricing-model-risk-model.readthedocs.io/en/latest/accuracy/bias.html) - [Value at Risk (VaR)](https://factor-pricing-model-risk-model.readthedocs.io/en/latest/accuracy/value_at_risk.html) For example, to examine the bias statistics of a risk model regarding an equally weighted portfolio (of which its weights are denoted as `weights`), pass the instrument observed returns (denoted as `returns`), and either a rolling risk model (to compute the volatility forecast) or a time series of volatility forecasts. ``` from fpm_risk_model.accuracy import compute_bias_statistics compute_bias_statistics( X=returns, weights=weights, window=window ... ) ``` ## Roadmap The following major features will be enhanced - Factor exposures computation from factor returns (Q1 2023) - Shrinking covariance (Q1 2023) - Exponential decay weighted least squares regression (Q1-Q2 2023) - Multiple types of running engine, e.g. Tensorflow (Q1-Q2 2023) - Multi-asset class factor model (Q2 2023) - Fundamental type risk model (Q3 2023) ## Contribution All levels of contributions are welcomed. Please refer to the [contributing](https://factor-pricing-model-risk-model.readthedocs.io/en/latest/contributing.html) section for development and release guidelines.


نیازمندی

مقدار نام
>=5.0,<6.0 Sphinx
>=0.3.6,<0.4.0 insipid-sphinx-theme
>=0.18,<0.19 myst-parser
>=1.3.5,<1.4.0 pandas
>=1.10.4,<2.0.0 pydantic
>=1.1.3,<2.0.0 scikit-learn
>=4.64.1,<5.0.0 tqdm


زبان مورد نیاز

مقدار نام
>=3.8,<4.0 Python


نحوه نصب


نصب پکیج whl factor-pricing-model-risk-model-2023.3.0:

    pip install factor-pricing-model-risk-model-2023.3.0.whl


نصب پکیج tar.gz factor-pricing-model-risk-model-2023.3.0:

    pip install factor-pricing-model-risk-model-2023.3.0.tar.gz