معرفی شرکت ها


facelib-1.2.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Face Recognition (train/test/deploy)(tensorflow/tflite/keras/edgetpu)
ویژگی مقدار
سیستم عامل -
نام فایل facelib-1.2.1
نام facelib
نسخه کتابخانه 1.2.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Kutay YILDIZ
ایمیل نویسنده kkutayyildiz@gmail.com
آدرس صفحه اصلی https://github.com/kutayyildiz/facelib
آدرس اینترنتی https://pypi.org/project/facelib/
مجوز -
# facelib Face recognition python library(tensorflow, opencv). ## Usage (console) try `facelib --help` to discover more ### Train ```bash foo@bar:~$ python3 -m facelib train train_images/ lotr Current pipeline: ssd_int8_cpu, mobilenetv2_fp32_cpu, densenet_fp32_cpu Classifier named `lotr` succesfully trained and saved. ``` * Folder structure: train_images/ ├───elijah_wood/ ├───├──0.jpg ├───├──1.jpg ├───liv_tyler/ ├───├──0.jpg ├───├──1.jpg ... | Image Name | Image | | ------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------- | | train_images/ian_mckellen/0.jpg | <img src=https://github.com/kutayyildiz/facelib/raw/master/facelib/_demo/lotr/train_images/ian_mckellen/0.jpg width=200 height=100> | | train_images/seanastin/0.jpg | ![seanastin](https://github.com/kutayyildiz/facelib/raw/master/facelib/_demo/lotr/train_images/sean_astin/0.jpg) | ### Predict ```bash foo@bar:~$ python3 -m facelib predict test_images/ -clf lotr -c -p Current pipeline: ssd_int8_cpu, mobilenetv2_fp32_cpu, densenet_fp32_cpu 1.jpg ├───10 faces detected ├───['billy_boyd', 'sean_astin', 'viggo_mortensen', 'elijah_wood', 'liv_tyler', 'dominic_monaghan', 'sean_bean', 'ian_mckellen', 'peter_jackson', 'orlando_bloom'] 2.jpg ├───5 faces detected ├───['dominic_monaghan', 'billy_boyd', 'elijah_wood', 'sean_astin', 'peter_jackson'] 3.jpg ├───6 faces detected ├───['orlando_bloom', 'dominic_monaghan', 'john_rhys_davies', 'sean_astin', 'elijah_wood', 'billy_boyd'] 0.jpeg ├───5 faces detected ├───['dominic_monaghan', 'orlando_bloom', 'elijah_wood', 'liv_tyler', 'billy_boyd'] ``` * Folder structure: test_images/ ├──0.jpeg ├──1.jpg ├──2.jpg ├──3.jpg * Generated folders/files: test_images_facelib_cropped/ ├───elijah_wood/ ├───├──2_2.jpg ├───├──3_1.jpg ├───├──4_3.jpg ├───liv_tyler/ ├───├──3_0.jpg ├───├──4_1.jpg ... | Image Name | Image | | ----------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------- | | test_images_facelib_cropped/billy_boyd/0_1.jpg | ![billyboyd](https://github.com/kutayyildiz/facelib/raw/master/facelib/_demo/lotr/test_images_facelib_cropped/billy_boyd/0_1.jpg) | | test_images_facelib_cropped/liv_tyler/4_1.jpg | ![livtyler](https://github.com/kutayyildiz/facelib/raw/master/facelib/_demo/lotr/test_images_facelib_cropped/liv_tyler/4_1.jpg) | | test_images_facelib_cropped/elijah_wood/3_1.jpg | ![elijahwood](https://github.com/kutayyildiz/facelib/raw/master/facelib/_demo/lotr/test_images_facelib_cropped/elijah_wood/3_1.jpg) | | test_images_facelib_plotted/1.jpg | ![1](https://github.com/kutayyildiz/facelib/raw/master/facelib/_demo/lotr/test_images_facelib_plotted/1.jpg) | ## Usage (python) ```python from facelib import facerec import cv2 # You can use face_detector, landmark_detector or feature_extractor individually using .predict method. e.g.(bboxes = facedetector.predict(img)) face_detector = facerec.SSDFaceDetector() landmark_detector = facerec.LandmarkDetector() feature_extractor = facerec.FeatureExtractor() pipeline = facerec.Pipeline(face_detector, landmark_detector, feature_extractor) path_img = './path_to_some_image.jpg' img = cv2.imread(path_img) img = img[...,::-1] # cv2 returns bgr format but every method inside this package takes rgb format bboxes, landmarks, features = pipeline.predict(img) # Note that values returned (bboxes and landmarks) are in fraction.[0,1] ``` ## Installation ### Pip installation ```bash pip3 install facelib ``` ### TFLite runtime installation To use facelib.facerec package use the following bash command to install tflite-runtime pip package. ```bash python3 -m facelib --install-tflite ``` or you can install from [tensorflow.org](https://www.tensorflow.org/lite/guide/python) ### Dev package Tensorflow is required for facelib.dev package. If you wish you can download facelib with tensorflow using the following command. ```bash pip3 install facelib[dev] ``` ## Info ### Dataset Feature extraction models are trained using insightfaces [MS1M-Arcface.](https://github.com/deepinsight/insightface/wiki/Dataset-Zoo) Landmark Detection models are trained using [VggFace2.](http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/) ## Contents ### Image Augmentation - [x] Random augmentation for landmark detection ### Layers - [x] DisturbLabel ### Face Alignment - [x] Insightface - [x] GoldenRatio - [x] Custom Implementations ### TFRecords - [ ] Widerface to TFRecords converter - [ ] VggFace2 to TFRecords converter - [ ] COFW to TFRecords converter ### Loss Functions #### Feature Extraction - [x] ArcFace - [x] CombinedMargin - [x] SphereFace(A-Softmax) - [ ] Center - [x] CosFace #### Landmark Detection - [x] EuclideanDistance(with different norms) ### Pretrained Models #### Face Detection - [x] SSD - [ ] MTCNN #### Face Feature Extraction - [x] MobileFaceNet - [x] SqueezeNet - [x] MobileNet - [x] MobileNetV2 - [x] DenseNet - [x] NasNetMobile #### Scripts - [ ] Feature extraction model training - [ ] Landmark detection model training - [ ] Chokepoint test on pipeline #### Facial Landmark Detection - [ ] SqueezeNet - [x] MobileNet - [x] MobileNetV2 - [ ] DenseNet ## References | | | | ---------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | | WiderFace | Yang, Shuo, Ping Luo, Chen Change Loy, and Xiaoou Tang. “WIDER FACE: A Face Detection Benchmark.” ArXiv:1511.06523 [Cs], November 20, 2015. <https://arxiv.org/abs/1511.06523> | | ArcFace | Deng, Jiankang, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. “ArcFace: Additive Angular Margin Loss for Deep Face Recognition.” ArXiv:1801.07698 [Cs], January 23, 2018. <https://arxiv.org/abs/1801.07698> | | MobileFaceNet | Chen, Sheng, Yang Liu, Xiang Gao, and Zhen Han. “MobileFaceNets: Efficient CNNs for Accurate Real-Time Face Verification on Mobile Devices.” CoRR abs/1804.07573 (2018). <http://arxiv.org/abs/1804.07573> | | VggFace2 | Cao, Qiong, Li Shen, Weidi Xie, Omkar M. Parkhi, and Andrew Zisserman. “VGGFace2: A Dataset for Recognising Faces across Pose and Age.” ArXiv:1710.08092 [Cs], October 23, 2017. <http://arxiv.org/abs/1710.08092> | | DenseNet | G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely Connected Convolutional Networks,” arXiv:1608.06993 [cs], Jan. 2018. <http://arxiv.org/abs/1608.06993> | | GoldenRatio (face alignment) | M. Hassaballah, K. Murakami, and S. Ido, “Face detection evaluation: a new approach based on the golden ratio,” SIViP, vol. 7, no. 2, pp. 307–316, Mar. 2013. <http://link.springer.com/10.1007/s11760-011-0239-3> | | SqueezeNet | F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size,” arXiv:1602.07360 [cs], Feb. 2016. <http://arxiv.org/abs/1602.07360> | | MobileNet | A. G. Howard et al., “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications,” arXiv:1704.04861 [cs], Apr. 2017. <http://arxiv.org/abs/1704.04861> | | MobileNetV2 | M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “MobileNetV2: Inverted Residuals and Linear Bottlenecks,” arXiv:1801.04381 [cs], Jan. 2018. <http://arxiv.org/abs/1801.04381> | | CosFace | H. Wang et al., “CosFace: Large Margin Cosine Loss for Deep Face Recognition,” arXiv:1801.09414 [cs], Jan. 2018. <http://arxiv.org/abs/1801.09414> | | SphereFace | W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song, “SphereFace: Deep Hypersphere Embedding for Face Recognition,” arXiv:1704.08063 [cs], Apr. 2017. <http://arxiv.org/abs/1704.08063> | | Bottleneck Layer | K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” arXiv:1512.03385 [cs], Dec. 2015. <http://arxiv.org/abs/1512.03385> | | MS-Celeb-1M | Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao, “MS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recognition,” arXiv:1607.08221 [cs], Jul. 2016. <http://arxiv.org/abs/1607.08221> | | DisturbLabel | arXiv:1605.00055 [cs.CV] | | Single Shot Detector | [1]W. Liu et al., “SSD: Single Shot MultiBox Detector,” arXiv:1512.02325 [cs], Dec. 2016. <https://arxiv.org/abs/1512.02325> | ## Links | | | | ---------------------- | --------------------------------------------------------------------------------------------------------- | | Insightface | <https://github.com/deepinsight/insightface> | | Tensorflow | <https://github.com/tensorflow/tensorflow> | | Tensorflow-Addons | <https://github.com/tensorflow/addons> | | Insightface-DatasetZoo | <https://github.com/deepinsight/insightface/wiki/Dataset-Zoo> | | Tensorflow-ModelZoo | <https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md> | | Cascade Data | <https://github.com/opencv/opencv/tree/master/data> | | TFLite Python | <https://www.tensorflow.org/lite/guide/python> |


نیازمندی

مقدار نام
- joblib
- opencv-python
- numpy
- scikit-image
- scikit-learn
- tensorflow


زبان مورد نیاز

مقدار نام
>=3.5, <3.8 Python


نحوه نصب


نصب پکیج whl facelib-1.2.1:

    pip install facelib-1.2.1.whl


نصب پکیج tar.gz facelib-1.2.1:

    pip install facelib-1.2.1.tar.gz