معرفی شرکت ها


face-library-1.1.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Face Library is an open source package for accurate and real-time face detection and recognition
ویژگی مقدار
سیستم عامل -
نام فایل face-library-1.1.3
نام face-library
نسخه کتابخانه 1.1.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Abdelrahman Akram
ایمیل نویسنده a.akram.9821@gmail.com
آدرس صفحه اصلی https://github.com/a-akram-98/face_lib
آدرس اینترنتی https://pypi.org/project/face-library/
مجوز -
# Face Library ![](https://img.shields.io/badge/current%20version-v1.1.0-brightgreen) [![Downloads](https://pepy.tech/badge/face-library)](https://pepy.tech/project/face-library) ![](https://img.shields.io/badge/python-%3E%3D3.6-blue) ![](https://img.shields.io/badge/licence-MIT-red) <p align="center"> <img src="https://raw.githubusercontent.com/a-akram-98/face_lib/master/logo/FL.jpeg" width="500"> </p> Face Library is a 100% python open source package for accurate and real-time face detection and recognition. The package is built over OpenCV and using famous models and algorithms for face detection and recognition tasks. Make face detection and recognition with only one line of code. The Library doesn't use heavy frameworks like TensorFlow, Keras and PyTorch so it makes it perfect for production. ## Patch 1.1.3 **BlazeFace** model used in face detection now instead of Haar Cascade, decreasing the inference time x10 times and detect frontal and profile face more accurate Please Upgrade to latest version if you already have Face Library. Table of contents ================= <!--ts--> * [Installation](#installation) * [Usage](#usage) * [Importing](#importing) * [Face detection](#face-detection) * [Face verfication](#face-verfication) * [Extracting face embeddings](#extracting-face-embeddings) * [For PIL images](#for-pil-images) * [Contributing](#contributing) * [Support](#support) * [Licence](#licence) <!--te--> ## Installation ```bash pip install face-library ``` ## Upgrade ```bash pip install face-library -U ``` ## Usage ### Importing ```python from face_lib import face_lib FL = face_lib() ``` The model is built over OpenCV, so it expects cv2 input (i.e. BGR image), it will support *PIL* in the next version for RGB inputs. At the end there is a piece of code to make *PIL* image like cv2 image. ### Face detection ```python import cv2 img = cv2.imread(path_to_image) faces = FL.get_faces(img) #return list of RGB faces image ``` If you want to get faces locations (coordinates) instead of the faces from the image you can use ```python no_of_faces, faces_coors = FL.faces_locations(face_img) ``` You can change the maximum number of faces could be detcted as follows ```python no_of_faces, faces_coors = FL.faces_locations(face_img, max_no_faces = 10) #default number of max_no_faces is 2 ``` You can change face detection thresholds *(score threshold, iou threshold)* -if needed-, by using the following function ```python FL.set_detection_params(scoreThreshold=0.82, iouThreshold=0.24) # default paramters are scoreThreshold=0.7, iouThreshold=0.3 ``` ### Face verfication The verfication process is compossed of two models, a face detection model detect faces in the image and a verfication model verfiy those face. ```python img_to_verfiy = cv2.imread(path_to_image_to_verify) #image that contain face you want verify gt_img = cv2.imread(path_to_image_to_compare) #image of the face to compare with face_exist, no_faces_detected = FL.recognition_pipeline(img_to_verfiy, gt_image) ``` You can change the threshold of verfication with the best for your usage or dataset like this : ```python face_exist, no_faces_detected = FL.recognition_pipeline(img_to_verfiy, gt_image, threshold = 1.1) #default number is 0.92 ``` also if you know that `gt_img` has only one face and the image is zoomed to that face (minimum 65%-75% of image is face) like this : <p align="center"> <img src="https://raw.githubusercontent.com/a-akram-98/face_lib/master/example%20img/jake.jpg" width="100"> </p> You can save computing time and the make the model more faster by using ```python face_exist, no_faces_detected = FL.recognition_pipeline(img_to_verfiy, gt_image, only_face_gt = True) ``` **Note**: if you needed to change detection parameters before the recognition pipeline you can call `set_detection_params` function as mentioned in [Face detection](#face-detection) section. ### Extracting face embeddings I you want represent the face with vector from face only image, you can use ```python face_embeddings = FL.face_embeddings(face_only_image) ``` ### For PIL images ```python import cv2 import numpy from PIL import Image PIL_img = Image.open(path_to_image) cv2_img = cv2.cvtColor(numpy.array(PIL_img), cv2.COLOR_RGB2BGR) #now you can use this to be input for face_lib functions ``` ## Contributing Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change. ## Support There are many ways to support a project - starring⭐️ the GitHub repo is just one. ## Licence Face library is licensed under the MIT License


نیازمندی

مقدار نام
- tqdm
>=2.12.0 requests[socks]
- six
- numpy
>=4.5.3 opencv-python
>=1.9.0 onnxruntime


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl face-library-1.1.3:

    pip install face-library-1.1.3.whl


نصب پکیج tar.gz face-library-1.1.3:

    pip install face-library-1.1.3.tar.gz