معرفی شرکت ها


face-biometric-recognition-0.0.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Recognize faces from Python
ویژگی مقدار
سیستم عامل -
نام فایل face-biometric-recognition-0.0.1
نام face-biometric-recognition
نسخه کتابخانه 0.0.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Ransom Voke Anighoro
ایمیل نویسنده voke.anighoro@gmail.com
آدرس صفحه اصلی https://gitlab.com/vokeanighoro/facial_recognition
آدرس اینترنتی https://pypi.org/project/face-biometric-recognition/
مجوز MIT license
# Facial Recognition Recognize and manipulate faces from Python. This is a fork from https://github.com/ageitgey/face_recognition. Built using [dlib](http://dlib.net/)'s state-of-the-art face recognition built with deep learning. The model has an accuracy of 99.38% on the [Labeled Faces in the Wild](http://vis-www.cs.umass.edu/lfw/) benchmark. ## Features #### Find faces in pictures Find all the faces that appear in a picture: ![](https://cloud.githubusercontent.com/assets/896692/23625227/42c65360-025d-11e7-94ea-b12f28cb34b4.png) ```python import face_biometric_recognition image = face_biometric_recognition.load_image_file("your_file.jpg") face_locations = face_biometric_recognition.face_locations(image) ``` #### Find and manipulate facial features in pictures Get the locations and outlines of each person's eyes, nose, mouth and chin. ![](https://cloud.githubusercontent.com/assets/896692/23625282/7f2d79dc-025d-11e7-8728-d8924596f8fa.png) ```python import face_biometric_recognition image = face_biometric_recognition.load_image_file("your_file.jpg") face_landmarks_list = face_biometric_recognition.face_landmarks(image) ``` #### Identify faces in pictures Recognize who appears in each photo. ![](https://cloud.githubusercontent.com/assets/896692/23625229/45e049b6-025d-11e7-89cc-8a71cf89e713.png) ```python import face_biometric_recognition known_image = face_biometric_recognition.load_image_file("biden.jpg") unknown_image = face_biometric_recognition.load_image_file("unknown.jpg") biden_encoding = face_biometric_recognition.face_encodings(known_image)[0] unknown_encoding = face_biometric_recognition.face_encodings(unknown_image)[0] results = face_biometric_recognition.compare_faces([biden_encoding], unknown_encoding) ``` ## Installation ### Requirements * Python 3.3+ or Python 2.7 * macOS or Linux (Windows not officially supported, but might work) ### Installation Options: #### Installing on Mac or Linux First, make sure you have dlib already installed with Python bindings: * [How to install dlib from source on macOS or Ubuntu](https://gist.github.com/ageitgey/629d75c1baac34dfa5ca2a1928a7aeaf) Then, make sure you have cmake installed: ```brew install cmake``` Finally, install this module from pypi using `pip3` (or `pip2` for Python 2): ```bash pip3 install face_biometric_recognition --no-index --find-links file:/path/to/face_biometric_recognition ``` ## Usage #### Python Module You can import the `face_biometric_recognition` module and then easily manipulate faces with just a couple of lines of code. It's super easy! ##### Automatically find all the faces in an image ```python import face_biometric_recognition image = face_biometric_recognition.load_image_file("my_picture.jpg") face_locations = face_biometric_recognition.face_locations(image) # face_locations is now an array listing the co-ordinates of each face! ``` You can also opt-in to a somewhat more accurate deep-learning-based face detection model. Note: GPU acceleration (via NVidia's CUDA library) is required for good performance with this model. You'll also want to enable CUDA support when compliling `dlib`. ```python import face_biometric_recognition image = face_biometric_recognition.load_image_file("my_picture.jpg") face_locations = face_biometric_recognition.face_locations(image, model="cnn") # face_locations is now an array listing the co-ordinates of each face! ``` ##### Automatically locate the facial features of a person in an image ```python import face_biometric_recognition image = face_biometric_recognition.load_image_file("my_picture.jpg") face_landmarks_list = face_biometric_recognition.face_landmarks(image) # face_landmarks_list is now an array with the locations of each facial feature in each face. # face_landmarks_list[0]['left_eye'] would be the location and outline of the first person's left eye. ``` ##### Recognize faces in images and identify who they are ```python import face_biometric_recognition picture_of_me = face_biometric_recognition.load_image_file("me.jpg") my_face_encoding = face_biometric_recognition.face_encodings(picture_of_me)[0] # my_face_encoding now contains a universal 'encoding' of my facial features # that can be compared to any other picture of a face! unknown_picture = face_biometric_recognition.load_image_file("unknown.jpg") unknown_face_encoding = face_biometric_recognition.face_encodings(unknown_picture)[0] # Now we can see the two face encodings # are of the same person with `compare_faces`! results = face_biometric_recognition.compare_faces( [my_face_encoding], unknown_face_encoding ) if results[0] is True: print("It's a picture of me!") else: print("It's not a picture of me!") ``` ## Articles and Guides that cover `face_biometric_recognition` - Adam Geitgey's article on how Face Recognition works: [Modern Face Recognition with Deep Learning](https://medium.com/@ageitgey/machine-learning-is-fun-part-4-modern-face-recognition-with-deep-learning-c3cffc121d78) - Covers the algorithms and how they generally work - [Face recognition with OpenCV, Python, and deep learning](https://www.pyimagesearch.com/2018/06/18/face-recognition-with-opencv-python-and-deep-learning/) by Adrian Rosebrock - Covers how to use face recognition in practice - [Raspberry Pi Face Recognition](https://www.pyimagesearch.com/2018/06/25/raspberry-pi-face-recognition/) by Adrian Rosebrock - Covers how to use this on a Raspberry Pi - [Face clustering with Python](https://www.pyimagesearch.com/2018/07/09/face-clustering-with-python/) by Adrian Rosebrock - Covers how to automatically cluster photos based on who appears in each photo using unsupervised learning ## How Face Recognition Works If you want to learn how face location and recognition work instead of depending on a black box library, [read Adam Geitgey's article](https://medium.com/@ageitgey/machine-learning-is-fun-part-4-modern-face-recognition-with-deep-learning-c3cffc121d78). ## Caveats * The facial recognition model is trained on adults and does not work very well on children. It tends to mix up children quite easy using the default comparison threshold of 0.6. * Accuracy may vary between ethnic groups. Please see [this wiki page](https://github.com/ageitgey/face_recognition/wiki/Face-Recognition-Accuracy-Problems#question-face-recognition-works-well-with-european-individuals-but-overall-accuracy-is-lower-with-asian-individuals) for more details. ## Thanks * Many thanks to [Adam Geitgey](https://github.com/ageitgey) for putting together such an amazing project and allowing public access to it.


نیازمندی

مقدار نام
>=0.3.0 face-recognition-models
>=6.0 Click
<=19.21.0,>=19.7 dlib
- numpy
- Pillow


نحوه نصب


نصب پکیج whl face-biometric-recognition-0.0.1:

    pip install face-biometric-recognition-0.0.1.whl


نصب پکیج tar.gz face-biometric-recognition-0.0.1:

    pip install face-biometric-recognition-0.0.1.tar.gz