معرفی شرکت ها


face-alignment-edit-1.3.3.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Detector 2D or 3D face landmarks from Python
ویژگی مقدار
سیستم عامل -
نام فایل face-alignment-edit-1.3.3.3
نام face-alignment-edit
نسخه کتابخانه 1.3.3.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Adrian Bulat
ایمیل نویسنده adrian@adrianbulat.com
آدرس صفحه اصلی https://github.com/1adrianb/face-alignment
آدرس اینترنتی https://pypi.org/project/face-alignment-edit/
مجوز BSD
# Face Recognition Detect facial landmarks from Python using the world's most accurate face alignment network, capable of detecting points in both 2D and 3D coordinates. Build using [FAN](https://www.adrianbulat.com)'s state-of-the-art deep learning based face alignment method. <p align="center"><img src="docs/images/face-alignment-adrian.gif" /></p> **Note:** The lua version is available [here](https://github.com/1adrianb/2D-and-3D-face-alignment). For numerical evaluations it is highly recommended to use the lua version which uses indentical models with the ones evaluated in the paper. More models will be added soon. [![License](https://img.shields.io/badge/License-BSD%203--Clause-blue.svg)](https://opensource.org/licenses/BSD-3-Clause) [![Test Face alignmnet](https://github.com/1adrianb/face-alignment/workflows/Test%20Face%20alignmnet/badge.svg)](https://github.com/1adrianb/face-alignment/actions?query=workflow%3A%22Test+Face+alignmnet%22) [![Anaconda-Server Badge](https://anaconda.org/1adrianb/face_alignment/badges/version.svg)](https://anaconda.org/1adrianb/face_alignment) [![PyPI version](https://badge.fury.io/py/face-alignment.svg)](https://pypi.org/project/face-alignment/) ## Features #### Detect 2D facial landmarks in pictures <p align='center'> <img src='docs/images/2dlandmarks.png' title='3D-FAN-Full example' style='max-width:600px'></img> </p> ```python import face_alignment from skimage import io fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, flip_input=False) input = io.imread('../test/assets/aflw-test.jpg') preds = fa.get_landmarks(input) ``` #### Detect 3D facial landmarks in pictures <p align='center'> <img src='https://www.adrianbulat.com/images/image-z-examples.png' title='3D-FAN-Full example' style='max-width:600px'></img> </p> ```python import face_alignment from skimage import io fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._3D, flip_input=False) input = io.imread('../test/assets/aflw-test.jpg') preds = fa.get_landmarks(input) ``` #### Process an entire directory in one go ```python import face_alignment from skimage import io fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, flip_input=False) preds = fa.get_landmarks_from_directory('../test/assets/') ``` #### Detect the landmarks using a specific face detector. By default the package will use the SFD face detector. However the users can alternatively use dlib, BlazeFace, or pre-existing ground truth bounding boxes. ```python import face_alignment # sfd for SFD, dlib for Dlib and folder for existing bounding boxes. fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, face_detector='sfd') ``` #### Running on CPU/GPU In order to specify the device (GPU or CPU) on which the code will run one can explicitly pass the device flag: ```python import face_alignment # cuda for CUDA fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, device='cpu') ``` Please also see the ``examples`` folder ## Installation ### Requirements * Python 3.5+ (it may work with other versions too). Last version with support for python 2.7 was v1.1.1 * Linux, Windows or macOS * pytorch (>=1.5) While not required, for optimal performance(especially for the detector) it is **highly** recommended to run the code using a CUDA enabled GPU. ### Binaries The easiest way to install it is using either pip or conda: | **Using pip** | **Using conda** | |------------------------------|--------------------------------------------| | `pip install face-alignment` | `conda install -c 1adrianb face_alignment` | | | | Alternatively, bellow, you can find instruction to build it from source. ### From source Install pytorch and pytorch dependencies. Please check the [pytorch readme](https://github.com/pytorch/pytorch) for this. #### Get the Face Alignment source code ```bash git clone https://github.com/1adrianb/face-alignment ``` #### Install the Face Alignment lib ```bash pip install -r requirements.txt python setup.py install ``` ### Docker image A Dockerfile is provided to build images with cuda support and cudnn. For more instructions about running and building a docker image check the orginal Docker documentation. ``` docker build -t face-alignment . ``` ## How does it work? While here the work is presented as a black-box, if you want to know more about the intrisecs of the method please check the original paper either on arxiv or my [webpage](https://www.adrianbulat.com). ## Contributions All contributions are welcomed. If you encounter any issue (including examples of images where it fails) feel free to open an issue. If you plan to add a new features please open an issue to discuss this prior to making a pull request. ## Citation ``` @inproceedings{bulat2017far, title={How far are we from solving the 2D \& 3D Face Alignment problem? (and a dataset of 230,000 3D facial landmarks)}, author={Bulat, Adrian and Tzimiropoulos, Georgios}, booktitle={International Conference on Computer Vision}, year={2017} } ``` For citing dlib, pytorch or any other packages used here please check the original page of their respective authors. ## Acknowledgements * To the [pytorch](http://pytorch.org/) team for providing such an awesome deeplearning framework * To [my supervisor](http://www.cs.nott.ac.uk/~pszyt/) for his patience and suggestions. * To all other python developers that made available the rest of the packages used in this repository.


نیازمندی

مقدار نام
- torch
- numpy
>=0.17 scipy
- scikit-image
- opencv-python
- tqdm
- numba
- enum34


زبان مورد نیاز

مقدار نام
>=3 Python


نحوه نصب


نصب پکیج whl face-alignment-edit-1.3.3.3:

    pip install face-alignment-edit-1.3.3.3.whl


نصب پکیج tar.gz face-alignment-edit-1.3.3.3:

    pip install face-alignment-edit-1.3.3.3.tar.gz