معرفی شرکت ها


ezancestry-0.0.7


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Easily predict and visualize genetic ancestry. Evaluate custom ancestry-informative SNP sets.
ویژگی مقدار
سیستم عامل -
نام فایل ezancestry-0.0.7
نام ezancestry
نسخه کتابخانه 0.0.7
نگهدارنده []
ایمیل نگهدارنده []
نویسنده arvkevi
ایمیل نویسنده arvkevi@gmail.com
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/ezancestry/
مجوز MIT
# ezancestry ![Build](https://github.com/arvkevi/ezancestry/actions/workflows/ci.yml/badge.svg) Easily visualize your direct-to-consumer genetics next to 2500+ samples from the 1000 genomes project. Evaluate the performance of a custom set of ancestry-informative snps (AISNPs) at classifying the genetic ancestry of the 1000 genomes samples using a machine learning model. A subset of 1000 Genomes Project samples' single nucleotide polymorphism(s), or, SNP(s) have been parsed from the [publicly available `.bcf` files](ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/bcf_files/). The subset of `SNPs`, AISNPs (ancestry-informative snps), were chosen from two publications: * Set of 55 AISNPs. [Progress toward an efficient panel of SNPs for ancestry inference](https://www.ncbi.nlm.nih.gov/pubmed?db=pubmed&cmd=Retrieve&dopt=citation&list_uids=24508742). Kidd et al. 2014 * Set of 128 AISNPs. [Ancestry informative marker sets for determining continental origin and admixture proportions in common populations in America.](https://www.ncbi.nlm.nih.gov/pubmed?cmd=Retrieve&dopt=citation&list_uids=18683858). Kosoy et al. 2009 (Seldin Lab) ezancestry ships with pretrained k-nearest neighbor models for all combinations of following: * Kidd (55 AISNPs) * Seldin (128 AISNPs) * continental-level population (superpopulation) * regional population (population) * principal componentanalysis (PCA) * neighborhood component analysis (NCA) * uniform manifold approximation and projection (UMAP) ![image](images/ezancestry.gif) ## Table of Contents * [Installation](#installation) * [Config](#config) * [Usage](#usage) * [command line tool](#command-line-interface) * [predict](#predict) * [plot](#plot) * [generate-dependencies](#generate-dependencies) * [build-model](#build-model) * [Python API](#python-api) * [Visualization](#visualization) * [Contributing](#contributing) ## Installation Install ezancestry with pip: ```shell pip install ezancestry ``` Or clone the repository and run `pip install` from the directory: ```shell git clone git@github.com:arvkevi/ezancestry.git cd ezancestry pip install . ``` ## Config The first time `ezancestry` is run it will generate a `config.ini` file and `data/` directory in your home directory under `${HOME}/.ezancestry`. You can edit `conf.ini` to change the default settings, but it is not necessary to use ezancestry. The settings are just a utility for the user so they don't have to be verbose when interacting with the software. The settings are also keyword arguments to each of the commands in the ezancestry API, so you can always override the default settings. These will be created in your home directory: ```shell ${HOME}/.ezancestry/conf.ini ${HOME}/.ezancestry/data/ ``` Explanations of each setting is described in the Options section of the `--help` of each command, for example: ```shell ezancestry predict --help Usage: ezancestry predict [OPTIONS] INPUT_DATA Predict ancestry from genetic data. * Default arguments are from the ~/.ezancestry/conf.ini file. * Arguments: INPUT_DATA Can be a file path to raw genetic data (23andMe, ancestry.com, .vcf) file, a path to a directory containing several raw genetic files, or a (tab or comma) delimited file with sample ids as rows and snps as columns. [required] Options: --output-directory TEXT The directory where to write the prediction results file --write-predictions / --no-write-predictions If True, write the predictions to a file. If False, return the predictions as a dataframe. [default: True] --models-directory TEXT The path to the directory where the model files are located. --aisnps-directory TEXT The path to the directory where the AISNPs files are located. --n-components INTEGER The number of components to use in the PCA dimensionality reduction. --k INTEGER The number of nearest neighbors to use in the KNN model. --thousand-genomes-directory TEXT The path to the 1000 genomes directory. --samples-directory TEXT The path to the directory containing the samples. --algorithm TEXT The dimensionality reduction algorithm to use. Choose pca|umap|nca --aisnps-set TEXT The name of the AISNP set to use. To start, choose either 'Kidd' or 'Seldin'. The default value in conf.ini is 'Kidd'. *If using your AISNP set, this value will be the in the namingc onvention for all the new model files that are created* --help Show this message and exit. ``` ## Usage ezancestry can be used as a command-line tool or as a Python library. ezancestry `predict` comes with pre-trained models when `--aisnps-set="Kidd"` (default) or `--aisnps-set="Seldin"`. `build-model` and `generate-dependencies` are for advanced users -- they download large amounts of data and build a new model from a custom AISNPs file. ### command-line interface There are four commands available: 1. `predict`: predict the genetic ancestry of a sample or cohort of samples using the nearest neighbors model. 2. `plot`: plot the genetic ancestry of samples using only the output of `predict`. 3. `generate-dependencies`: generate the dependencies for `build-model`. 4. `build-model`: build a nearest neighbors model from the 1000 genomes data using a custom set of AISNPs. Requires: `generate-dependencies` to be run first. Use the commands in the following way: #### predict ezancestry can predict the genetic ancestry of a sample or cohort of samples using the nearest neighbors model. The `input_data` can be a file path to raw genetic data (23andMe, ancestry.com, .vcf) file, a path to a directory containing several raw genetic files, or a (tab or comma) delimited file with sample ids as rows and snps as columns. This writes a file, `predictions.csv` to the `output_directory` (defaults to current directory). This file contains predicted ancestry for each sample. **Direct-to-consumer genetic data file (23andMe, ancestry.com, etc.)**: ```shell ezancestry predict mygenome.txt ``` **Directory of direct-to-consumer genetic data files or .vcf files**: ```shell ezancestry predict /path/to/genetic_datafiles ``` **comma-separated file with sample ids as rows and snps as columns, filled with genotypes as values** ```shell ezancestry predict ${HOME}/.ezancestry/data/aisnps/thousand_genomes.KIDD.dataframe.csv ``` #### plot Visualize the output of `predict` using the `plot` command. This will open a 3d scatter plot in a browser. ```shell ezancestry plot predictions.csv ``` #### generate-dependencies This command will download all of the data required to build a new nearest neighbors model for a custom set of AISNPs. **This command will attempt to download all the .bcf files from The 1000 Genomes Project.** If you want to use existing models, see `predict` and `plot`. Without any arguments this command will download all necessary data to build new models and put it in the `${HOME}/.ezancestry/data/` directory. ```shell ezancestry generate-dependencies ``` Now you are ready to build a new model with `build-model`. #### build-model Test the discriminative power of your custom set of AISNPs. This command will build all the necessary models to visualize and predict the 1000 genomes samples as well as user-uploaded samples. A model performace evaluation report will be generated for a five-fold cross-validation on the training set of the 1000 genomes samples as well as a report for the holdout set. Create a custom AISNP file here: `~/.ezancestry/data/aisnps/custom.AISNP.txt`. The prefix of the filename, `custom`, can be whatever you want. Note that this value is used as the `aisnps-set` keyword argument for other ezancestry commands. The file should look like this: ``` id chromosome position_hg19 rs731257 7 12669251 rs2946788 11 24010530 rs3793451 9 71659280 rs10236187 7 139447377 rs1569175 2 201021954 ``` ```shell ezancestry build-model --aisnps-set=custom ``` ### Python API See the [notebook](github.com/arvkevi/ezancestry/ezancestry_library_tutorial.ipynb) ### Visualization [http://ezancestry.herokuapp.com/](http://ezancestry.herokuapp.com/) [Open in Streamlit](https://share.streamlit.io/arvkevi/ezancestry/streamlit-share/streamlit/app.py) ![image](images/ezancestry.png) ### Contributing Contributions are welcome! Please feel free to create an issue for discussion or make a pull request.


نیازمندی

مقدار نام
>=3.21.2,<4.0.0 cmake
>=0.30.11,<=0.30.14 cyvcf2
>=0.5.3,<0.6.0 loguru
>=1.21.2,<2.0.0 numpy
>=1.3.2,<2.0.0 pandas
>=5.3.1,<6.0.0 plotly
>=0.24.2,<0.25.0 scikit-learn
>=2.3.0,<3.0.0 snps
>=0.87.0,<0.88.0 streamlit
>=0.5.1,<0.6.0 umap-learn
>=0.4.0,<0.5.0 typer


زبان مورد نیاز

مقدار نام
>=3.7.1,<3.11 Python


نحوه نصب


نصب پکیج whl ezancestry-0.0.7:

    pip install ezancestry-0.0.7.whl


نصب پکیج tar.gz ezancestry-0.0.7:

    pip install ezancestry-0.0.7.tar.gz