معرفی شرکت ها


extrap-4.0.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Extra-P, automated performance modeling for HPC applications
ویژگی مقدار
سیستم عامل -
نام فایل extrap-4.0.4
نام extrap
نسخه کتابخانه 4.0.4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Extra-P project
ایمیل نویسنده extra-p@lists.parallel.informatik.tu-darmstadt.de
آدرس صفحه اصلی https://github.com/extra-p/extrap
آدرس اینترنتی https://pypi.org/project/extrap/
مجوز -
# Extra-P **Automated performance modeling for HPC applications** [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/extrap?style=plastic)](https://badge.fury.io/py/extrap) ![GitHub release (latest by date)](https://img.shields.io/github/v/release/extra-p/extrap?style=plastic) [![PyPI version](https://badge.fury.io/py/extrap.png)](https://badge.fury.io/py/extrap) [![PyPI - License](https://img.shields.io/pypi/l/extrap?style=plastic)](https://badge.fury.io/py/extrap) ![GitHub issues](https://img.shields.io/github/issues/extra-p/extrap?style=plastic) ![GitHub pull requests](https://img.shields.io/github/issues-pr/extra-p/extrap?style=plastic) ![GitHub Workflow Status](https://img.shields.io/github/workflow/status/extra-p/extrap/Test%20extrap%20package?style=plastic) [<img alt="Screenshot of Extra-P" src="https://github.com/extra-p/extrap/raw/master/docs/images/extra-p-2d.png" height="200" align="right" title="Screenshot of Extra-P"/>](docs/images/extra-p-2d.png) Extra-P is an automatic performance-modeling tool that supports the user in the identification of *scalability bugs*. A scalability bug is a part of the program whose scaling behavior is unintentionally poor, that is, much worse than expected. A performance model is a formula that expresses a performance metric of interest such as execution time or energy consumption as a function of one or more execution parameters such as the size of the input problem or the number of processors. Extra-P uses measurements of various performance metrics at different execution configurations as input to generate performance models of code regions (including their calling context) as a function of the execution parameters. All it takes to search for scalability issues even in full-blown codes is to run a manageable number of small-scale performance experiments, launch Extra-P, and compare the asymptotic or extrapolated performance of the worst instances to the expectations. Extra-P generates not only a list of potential scalability bugs but also human-readable models for all performance metrics available such as floating-point operations or bytes sent by MPI calls that can be further analyzed and compared to identify the root causes of scalability issues. Extra-P is developed by [TU Darmstadt](https://www.parallel.informatik.tu-darmstadt.de/) – in collaboration with [ETH Zurich](https://spcl.inf.ethz.ch/). *For questions regarding Extra-P please send a message to <extra-p-support@lists.parallel.informatik.tu-darmstadt.de>.* -------------------------------------------------------------------------------------------- ### Table of Contents 1. [Requirements](#Requirements) 2. [Installation](#Installation) 3. [How to use it](#Usage) 4. [License](#License) 5. [Citation](#Citation) 6. [Publications](#Publications) -------------------------------------------------------------------------------------------- ### Requirements * Python 3.7 or higher * numpy * pycubexr * marshmallow * packaging * tqdm * PySide2 (for GUI) * matplotlib (for GUI) * pyobjc-framework-Cocoa (only for GUI on macOS) ### Installation Use the following command to install Extra-P and all required packages via `pip`. ``` python -m pip install extrap --upgrade ``` The `--upgrade` forces the installation of a new version if a previous version is already installed. ### Usage Extra-P can be used in two ways, either using the command-line interface or the graphical user interface. More information about the usage of Extra-P with both interfaces can be found in the [quick start guide](docs/quick-start.md) . #### Graphical user interface The graphical user interface can be started by executing the `extrap-gui` command. #### Command line interface The command line interface is available under the `extrap` command: `extrap` _OPTIONS_ (`--cube` | `--text` | `--talpas` | `--json` | `--extra-p-3`) _FILEPATH_ You can use different input formats as shown in the examples below: * Text files: `extrap --text test/data/text/one_parameter_1.txt` * JSON files: `extrap --json test/data/json/input_1.JSON` * Talpas files: `extrap --talpas test/data/talpas/talpas_1.txt` * Create model and save it to text file at the given path: `extrap --out test.txt --text test/data/text/one_parameter_1.txt` The Extra-P command line interface has the following options. | Arguments | | |----------------------------------------------------------------------|----------------------------------------------| | **Positional** | | | _FILEPATH_ | Specify a file path for Extra-P to work with | | **Optional** | | | `-h`, `--help` | Show help message and exit | | `--version` | Show program's version number and exit | | `--log` {`debug`, `info`, `warning`, `error`, `critical`} | Set program's log level (default: `warning`) | | **Input options** | | | `--cube` | Load data from CUBE files | | `--text` | Load data from text files | | `--talpas` | Load data from Talpas data format | | `--json` | Load data from JSON or JSON Lines file | | `--extra-p-3` | Load data from Extra-P 3 experiment | | `--scaling` {`weak`, `strong`} | Set weak or strong scaling when loading data from CUBE files (default: `weak`) | | **Modeling options** | | | `--median` | Use median values for computation instead of mean values | | `--modeler` {`default`, `basic`, `refining`, `multi-parameter`} | Selects the modeler for generating the performance models | | `--options` _KEY_=_VALUE_ [_KEY_=_VALUE_ ...] | Options for the selected modeler | | `--help-modeler` {`default`, `basic`, `refining`, `multi-parameter`} | Show help for modeler options and exit | | **Output options** | | | `--out` _OUTPUT_PATH_ | Specify the output path for Extra-P results | | `--print` {`all`, `callpaths`, `metrics`, `parameters`, `functions`} | Set which information should be displayed after modeling (default: `all`) | | `--save-experiment` <i>EXPERIMENT_PATH</i> | Saves the experiment including all models as Extra-P experiment (if no extension is specified, “.extra-p” is appended) | ### License [BSD 3-Clause "New" or "Revised" License](LICENSE) ### Citation Please cite Extra-P in your publications if it helps your research: @inproceedings{calotoiu_ea:2013:modeling, author = {Calotoiu, Alexandru and Hoefler, Torsten and Poke, Marius and Wolf, Felix}, month = {November}, title = {Using Automated Performance Modeling to Find Scalability Bugs in Complex Codes}, booktitle = {Proc. of the ACM/IEEE Conference on Supercomputing (SC13), Denver, CO, USA}, year = {2013}, pages = {1--12}, publisher = {ACM}, isbn = {978-1-4503-2378-9}, doi = {10.1145/2503210.2503277} } ### Publications 1. Alexandru Calotoiu, David Beckingsale, Christopher W. Earl, Torsten Hoefler, Ian Karlin, Martin Schulz, Felix Wolf: Fast Multi-Parameter Performance Modeling. In Proc. of the 2016 IEEE International Conference on Cluster Computing (CLUSTER), Taipei, Taiwan, pages 172–181, IEEE, September 2016. [PDF](https://apps.fz-juelich.de/jsc-pubsystem/aigaion/attachments/fastmultiparam.pdf-f839eba376c6d61a8c4cab9860b6b3bf.pdf) 2. Marcus Ritter, Alexandru Calotoiu, Sebastian Rinke, Thorsten Reimann, Torsten Hoefler, Felix Wolf: *Learning Cost-Effective Sampling Strategies for Empirical Performance Modeling.* In Proc. of the 34th IEEE International Parallel and Distributed Processing Symposium (IPDPS), New Orleans, LA, USA, pages 884–895, IEEE, May 2020. [PDF](https://apps.fz-juelich.de/jsc-pubsystem/aigaion/attachments/ritter_ea_2020_ipdps.pdf-01cbe96f7a170aba7c7ef941f966d292.pdf) 3. Marcus Ritter, Alexander Geiß, Johannes Wehrstein, Alexandru Calotoiu, Thorsten Reimann, Torsten Hoefler, Felix Wolf: *Noise-Resilient Empirical Performance Modeling with Deep Neural Networks.* In Proc. of the 35th IEEE International Parallel and Distributed Processing Symposium (IPDPS), Portland, Oregon, USA, pages 23–34, IEEE, May 2021. [PDF](http://htor.inf.ethz.ch/publications/img/noiseresilientmodeling.pdf)


نیازمندی

مقدار نام
~=5.13 pyside2
~=1.18 numpy
~=3.2 matplotlib
~=4.47 tqdm
~=1.1 pycubexr
~=3.7 marshmallow
~=20.0 packaging
~=6.2 pyobjc-framework-Cocoa


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl extrap-4.0.4:

    pip install extrap-4.0.4.whl


نصب پکیج tar.gz extrap-4.0.4:

    pip install extrap-4.0.4.tar.gz