معرفی شرکت ها


expstock-0.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Stock your experiments
ویژگی مقدار
سیستم عامل -
نام فایل expstock-0.2
نام expstock
نسخه کتابخانه 0.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Chie Hayashida
ایمیل نویسنده chie-hayashida@cookpad.com
آدرس صفحه اصلی https://github.com/chie8842/expstock
آدرس اینترنتی https://pypi.org/project/expstock/
مجوز MIT
[![wercker status](https://app.wercker.com/status/da135ca979d1a5dcb1ed72e2f5de1f65/s/master "wercker status")](https://app.wercker.com/project/byKey/da135ca979d1a5dcb1ed72e2f5de1f65) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![Gitter chat](https://badges.gitter.im/gitterHQ/gitter.png)](https://gitter.im/expstock/expstock) [![PyPI version](https://badge.fury.io/py/expstock.svg)](https://badge.fury.io/py/expstock) [![Maintainability](https://api.codeclimate.com/v1/badges/37c08a214b40cfdc9ac6/maintainability)](https://codeclimate.com/github/chie8842/expstock/maintainability) # EXPSTOCK **expstock** is a tool to manage results of experiments in machine learning, data analysis, simulation, etc. When we try to integrate machine learning models or performe simulation using a mathematical model, we execute the same script or program many times with different parameters or logics. In order to summalize or reproduce our experiments, it is necessary to take environmental information comprehensively. expstock can automatically save environmental information with text files with adding simple implementation. ## Getting Started expstock has mainly two functions. * Saving logs as test files(Basic Usage) * Log Visualization(Optional) ### Basic Usage There are two implementation types. The simplest way is to surround the target mothod with the decorator as below. ``` from expstock import expstock e = expstock.ExpStock(exp_name='test_experiment', report=True, dbsave=True) @expstock.expstock(e) def run(a, b): return a + b e.append_param(a=a, b=b) e.set_memo('This is the first experiment') run(a, b) ``` But in case such as using Jupyter notebook, following implementation may be more convenient. ``` from expstock import expstock e = expstock.ExpStock(dbsave=True) e.append_param(a=a, b=b) e.set_memo('This is the first experiment') e.pre_stock() result = a + b e.result = result e.post_stock() ``` #### Log Format expstock saves environmental information with following directory structure. This is default setting, and we can change it. ``` experiments ├── <yyyymmdd_hhmmss>_<experiment_name> │   ├── exec_time.txt │   ├── git_diff.txt │   ├── git_head.txt │   ├── machine_info.txt │   ├── memo.txt │   ├── params.txt │   ├── report.txt │   ├── result.txt │   ├── stderr.txt │   └── stdout.txt ``` In the above, each file contains following information. |file name | contents|user implementation| |----------|---------|--------| |exec_time.txt |start time, finish time, execution time of the experiment| - | |git_diff.txt | result of `git diff`| - | |git_head.txt |result of `git log -n 1 --format=%H`| - | |machine_info.txt |machine info such as os version and hostname which can get with `platform` which is python builtin package| - | |memo.txt |memo for each experiments. | e = ExpStock(memo = 'hoge') or e.set_memo(hoge) | |params.txt |experiment parameter. | e = ExpStock(params=[{'a': a}, {'b': b }]) or e.apend_params(a=a, b=b))| |result.txt|return value of the experiment| e.result = func() or automatically set when using decorator| |stdout.txt|result of sys.stdout| - | |stderr.txt|result of sys.stderr| - | |report.txt|summary of above information. if specify `report=True` when create Expstock instance, it creates report.txt| - | In addition, we can save other files such as machine learning models in same directory with a simple command. ``` from sklearn.externals import joblib joblib.dump(model, e.log_dirname) ``` ### Log Visualization If you use `e = ExpStock(dbsave=True)`, some types of logs are save on not only text but also sqlite tables. And now, this tool can visualize your experiments with `expstock-server`. ``` $ expstock-server ``` You can access expstock-server with **<server-ip>:8000**. ![expstock-server](./img/expstock-server.png) ## Getting expstock ### Requirements No requirements for default usage(only text outputs). If you use `dbsave` function and see logs on expstock dashboard, [sqlite](https://www.sqlite.org/index.html) is needed. ### Installation You can get expstock from pypi. ``` pip install expstock ``` You can get source from github and build, too. ``` git clone https://github.com/chie8842/expstock python setup.py install ``` ## Contributing Contribution is welcomed. Please feel free to write issues or talk to on [gitter](https://gitter.im/expstock/expstock).


نیازمندی

مقدار نام
- bottle


نحوه نصب


نصب پکیج whl expstock-0.2:

    pip install expstock-0.2.whl


نصب پکیج tar.gz expstock-0.2:

    pip install expstock-0.2.tar.gz