معرفی شرکت ها


explainit-1.2.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A modern, enterprise-ready business intelligence web application
ویژگی مقدار
سیستم عامل -
نام فایل explainit-1.2.1
نام explainit
نسخه کتابخانه 1.2.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Katonic Pty Ltd.
ایمیل نویسنده shailesh.kumar@katonic.ai
آدرس صفحه اصلی https://www.katonic.ai/
آدرس اینترنتی https://pypi.org/project/explainit/
مجوز Apache-2.0
<!-- Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Explainit <p align="center"> <a href="https://katonic.ai/"> <img src="https://raw.githubusercontent.com/katonic-dev/explainit/master/docs/assets/explainit-logo.png" width="250" hight="180"> </a> </p> <br /> [![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0) [![GitHub release (latest SemVer)](https://img.shields.io/github/v/release/katonic-dev/explainit?sort=semver)](https://github.com/katonic-dev/explainit/releases) [![PyPI version](https://img.shields.io/pypi/v/explainit.svg)](https://pypi.python.org/pypi/explainit) [![PyPI](https://img.shields.io/pypi/pyversions/explainit.svg?maxAge=2592000)](https://pypi.python.org/pypi/explainit) [![test](https://github.com/katonic-dev/explainit/actions/workflows/tests.yml/badge.svg?branch=master&event=push)](https://github.com/katonic-dev/explainit/actions/workflows/tests.yml) [![Docs Latest](https://img.shields.io/badge/docs-latest-blue.svg)](https://docs.katonic.ai/) ## What is Explainit? Explainit is a modern, enterprise-ready business intelligence web application that re-uses existing frameworks to manage and serve dashboard features to machine learning project lifecycle. ## Features Explainit allows ML platform teams to: * Analyze Drift in the existing data stack (Features & Targets). * Prepare very short summary of productionized data. * Perform Quality Checks on the data to provide the feature overview. * Analyze in-depth relationship between features & target. ## Who is Explainit for? Explainit helps ML platform teams with DevOps experience monitor productionized batch data. Explainit can also help these teams build towards a explainability/monitoring platform that improves collaboration between engineers and data scientists. Explainit is likely not the right tool if you: * Are in an organization that’s just getting started with ML and is not yet sure what the business impact of ML is. * Rely primarily on unstructured data. ## Quick Concepts on Drift ### What is Model Drift? Model Drift (also known as model decay) refers to the degradation of a model’s prediction power due to changes in the environment or changes in feature distribution, and thus the relationships between variables. ### Types of Model Drift There are three main types of model drift: - Concept drift - Data drift - Upstream data changes ***Concept drift*** is a type of model drift where the relationship between the input and target changes over time. It usually occurs when real-world environments change in contrast to the training data the model learned from. For example, the behaviour of customers can change over time, lowering the accuracy of a model trained on historic customer datasets. ***Data drift*** is a type of model drift where the properties of the independent variable(s) change(s). Examples of data drift include changes in the data due to seasonality, changes in consumer preferences, the addition of new products, etc… ***Upstream data changes*** refer to operational data changes in the data pipeline. An example of this is when a feature is no longer being generated, resulting in missing values. Another example is a change in measurement (eg. miles to kilometers). ## Installation guide Install the Explainit Package: ```commandline pip install explainit ``` ## Run the App In order to generate the dashboards inside the application, you need to run the following commands. ```python from explainit.app import build ``` After importing the methods, we need some data that should be passed to the application in order to generate the dashboards. We'll use the `Default Loan` dataset. ```python import pandas as pd ref_data = pd.read_csv("https://raw.githubusercontent.com/katonic-dev/explainit/master/examples/data/reference_data.csv", index_col=None) prod_data = pd.read_csv("https://raw.githubusercontent.com/katonic-dev/explainit/master/examples/data/production_data.csv", index_col=None) ``` Once you have the both reference and production datasets, all you need to do is pass those datasets into the method that we imported along with the target column name and target column type (type should be `cat` for categorical column and `num` for numerical columns). ```python build( reference_data=ref_data, production_data=prod_data, target_col_name="bad_loan", target_col_type="cat", host="127.0.0.1", port=8000 ) ``` If you want to run your application in a separate server rather than localhost, you need to mention the host and port addresses. ## App Snapshots Below is a snapshot of the landing page of Explainit Dashboard. <p align="center"> <img src="https://raw.githubusercontent.com/katonic-dev/explainit/master/docs/assets/metrics_row.png"> </p> <br /> ## Contributor Guide Interested in contributing? Check out our [CONTRIBUTING.md](https://github.com/katonic-dev/explainit/blob/master/CONTRIBUTING.md) to find resources around contributing along with a detailed guide on how to set up a development environment. ## QnA ### Q. What exactly the scope of the app is? **A**. By this app users can calculate Dataset Drift, Target Drift and Data Quality metrics to understand the Production / Real-World Data along with Training / Reference Data better to come to a decision. ### Q. What does the input data look like? **A**. Input Data is nothing but your reference/training and production/inference data. The reference data will be used for the distribution comparision for the production data. These input data should be passed as pandas dataframes. ### Q. What outputs does the app produce? **A**. App shows / produces the Statistical Information about the complete data (features + target) for drift analysis, Distribution Plots for each of the features to understand the data better, Contribution of each features on the target along with Correlations metrics. ### Q. What decisions can the user make by using the app? **A**. With Drift Information from the app user can make some decisions: > * Look for the quality data for the usecase. > * Make changes or train new models for production. > * Update the domain specific concepts to understand the real-world better for new models. - for more FAQs visit [faq.md](https://github.com/katonic-dev/explainit/blob/master/docs/faq.md).


نیازمندی

مقدار نام
>=1.0.9 Brotli
>=2.2.2 Flask
>=1.12 Flask-Compress
<4,>3 Jinja2
>=2.1.1 MarkupSafe
>=2.2.2 Werkzeug
>=2022.6.15 certifi
<9.0.0,>8.0.0 click
- colorama
>=2.6.1 dash
>=2.0.0 dash-core-components
>=0.5.0 dash-daq
>=2.0.0 dash-html-components
>=5.0.0 dash-table
==4.12.0 importlib-metadata
==2.1.2 itsdangerous
<3,>1.22 numpy
>=3.7.12 orjson
<2,>=1.4.3 pandas
>=5.10.0 plotly
>=2.8.2 python-dateutil
>=2022.2.1 pytz
>=1.16.0 six
>=1.5.4 scipy
<9,>7 tenacity
==3.8.1 zipp
>=3.9 flake8
>=0.910 mypy
>=6.0 pytest
>=2.0 pytest-cov
==3.14.6 tox
==20.0.33 virtualenv


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl explainit-1.2.1:

    pip install explainit-1.2.1.whl


نصب پکیج tar.gz explainit-1.2.1:

    pip install explainit-1.2.1.tar.gz