معرفی شرکت ها


expectation-reflection-0.0.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Expectation Reflection for classification
ویژگی مقدار
سیستم عامل -
نام فایل expectation-reflection-0.0.9
نام expectation-reflection
نسخه کتابخانه 0.0.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Danh-Tai HOANG
ایمیل نویسنده hoangdanhtai@gmail.com
آدرس صفحه اصلی https://github.com/danhtaihoang/expectation_reflection
آدرس اینترنتی https://pypi.org/project/expectation-reflection/
مجوز MIT
Expectation Reflection (ER) is a multiplicative optimization method that trains the interaction weights from features to target according to the ratio of target observations to their corresponding model expectations. This approach completely separates model updates from minimization of a cost function measuring goodness of fit, so that it can take the cost function as an effective stopping criterion of the iteration. Advantages of this method: (1) working relatively well even in the regime of small sample sizes; (2) using only one hyper-parameter; (3) being able to demonstrate the system mechanism. In the current version, ER `classification` can work as a classifier (for both binary and multinomial tasks). The extension to `regression` will be appeared shortly. ## Installation ##### From PyPI ```bash pip install expectation-reflection ``` ##### From Repository ```bash git clone https://github.com/danhtaihoang/expectation-reflection.git ``` ## Usage The implementation of ER is very similar to that of other classifiers in `sklearn`, bassically it consists of the following steps. * Import the `expectation_reflection` package into your python script: ```python from expectation_reflection import classification as ER ``` * Select a model: ```python model = ER.model(max_iter=100,reg=0.01,random_state=1) ``` * Import your `dataset.txt` into python script. ```python Xy = np.loadtxt('dataset.txt') ``` * Select the features and target from the dataset. If the target is the last column then ```python X, y = Xy[:,:-1], Xy[:,-1] ``` * Import `train_test_split` from `sklearn` to split data into training and test sets: ```python from sklearn.model_selection import train_test_split X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.5,random_state = 1) ``` * Train the model with `(X_train, y_train)` set: ```python model.fit(X_train, y_train) ``` * Predict the output class `y_pred` and its probability `p_pred` of a new dataset `X_test`: ```python y_pred = model.predict(X_test) print('predicted output:', y_pred) p_pred = model.predict_proba(X_test) print('predicted probability:', p_pred) ``` * Intercept and interaction weights: ```python print('intercept:', model.intercept_) print('interaction weights:', model.coef_) ``` ### Hyper-Parameter Optimization ER has only one hyper-parameter, `reg`, which can be optimized by using `GridSearchCV` from `sklearn`: ```python from sklearn.model_selection import GridSearchCV model = ER.model(max_iter=100, random_state = 1) reg = [0.0001, 0.001, 0.01, 0.1, 0.5, 1.] hyper_parameters = dict(reg=reg) clf = GridSearchCV(model, hyper_parameters, cv=4, n_jobs=-1, iid='deprecated') best_model = clf.fit(X_train, y_train) ``` * Best hyper-parameters: ```python print('best_hyper_parameters:',best_model.best_params_) ``` * Predict the output `y_pred` and its probability `p_pred`: ```python y_pred = best_model.best_estimator_.predict(X_test) print('predicted output:', y_pred) p_pred = best_model.best_estimator_.predict_proba(X_test) print('predicted probability:', p_pred) ``` ### Performance Evaluation We can measure the model performance by using `metrics` from `sklearn`: ```python from sklearn.metrics import accuracy_score,precision_score,recall_score,f1_score,\ roc_auc_score,roc_curve,auc acc = accuracy_score(y_test,y_pred) print('accuracy:', acc) precision = precision_score(y_test,y_pred) print('precision:', precision) recall = recall_score(y_test,y_pred) print('recall:', recall) f1score = f1_score(y_test,y_pred) print('f1score:', f1score) roc_auc = roc_auc_score(y_test,p_pred) ## note: it is p_pred, not y_pred print('roc auc:', roc_auc) ``` ROC AUC can be also calculated as ```python fp,tp,thresholds = roc_curve(y_test, p_pred, drop_intermediate=False) roc_auc = auc(fp,tp) print('roc auc:', roc_auc) ``` ## Citation Please cite the following papers if you use this package in your work: * [Danh-Tai Hoang, Juyong Song, Vipul Periwal, and Junghyo Jo, Network inference in stochastic systems from neurons to currencies: Improved performance at small sample size, Physical Review E, 99, 023311 (2019)](https://journals.aps.org/pre/abstract/10.1103/PhysRevE.99.023311) * [Danh-Tai Hoang, Junghyo Jo, and Vipul Periwal, Data-driven inference of hidden nodes in networks, Physical Review E, 99, 042114 (2019)](https://journals.aps.org/pre/abstract/10.1103/PhysRevE.99.042114)


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl expectation-reflection-0.0.9:

    pip install expectation-reflection-0.0.9.whl


نصب پکیج tar.gz expectation-reflection-0.0.9:

    pip install expectation-reflection-0.0.9.tar.gz