معرفی شرکت ها


exmoset-0.1.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Automating the generation of human readable descriptions of arbitrary subsets of molecular space.
ویژگی مقدار
سیستم عامل -
نام فایل exmoset-0.1.0
نام exmoset
نسخه کتابخانه 0.1.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Adam Mater
ایمیل نویسنده adam.mater@anu.edu.au
آدرس صفحه اصلی https://github.com/acmater/exmoset
آدرس اینترنتی https://pypi.org/project/exmoset/
مجوز -
# EXplainable MOlecular SETs Package to automate the identification of molecular similarity given an arbitrary set of molecules and associated functions to calculate the value of particular properties (label fingerprints). # Installation The easiest way to install is using pip following the setup of a new conda environment with rdkit installed (rdkit does not play well with pip). 1. `conda create -n exmoset python=3.8` 2. `conda activate exmoset` 3. `conda install -c conda-forge rdkit` 4. `pip install exmoset` ## API The `MolSpace` Class handles the analysis of a given molecular set in accordance with the list of fingerprints provided. The molecules can be passed to Molspace in any format, with additional conversions specified by the `mol_converters` argument. ```python analysis = MolSpace(molecules, fingerprints = fingerprints, file="data/QM9_Data.csv", mol_converters={"rd" : Chem.MolFromSmiles, "smiles" : str}, index_col="SMILES") ``` ### Fingerprints Fingerprints are a standardized way for Molspace to calculate the properties for each molecule it is analysing. Its arguments determine the grammatical structure of the label that will be produced (`property, noun and verb`), and a function to calculate the property (`calculator`) along with what molecular format this function works on (`mol_format`). The grammatical structure of the resulting labels is a work in progress, and may lead to some poor results that require further processing. ```python def contains_C(mol): return 1 if C in mol else 0 contains_carbon = Fingerprint(property="Contains C", verb="contain", noun="Molecule", label_type="binary", calculator=contains_C, mol_format="smiles") ``` ### Molecule Converters The mol_converters argument provides the means to transform each molecule into alternate representations. The argument is a dictionary with the following structure {Identifier : Function_that_will_convert} that is expanded in the following way: ```python formats = {key : mol_converters[key](mol) for key in mol_converters.keys()} # Assigns each identifier to its assocaited representation by self.Molecules.append(Molecule(mol, **formats)) # Unpacks the new formats as kwargs into the Molecule object ``` An example is provided below ```python mol_converters = {"rd" : Chem.MolFromSmiles, "smiles" : str} # Will convert molecules provided as smiles strings into Chem.rd objects from RDKit and maintain the SMILES in the dataset as strings. ``` ## Label Types ### Binary Binary labels indicate the presence of absence of a particular element, bond type, or molecular feature (such as aromaticity). Simplest to calculate and best behaved with respect to the entropy estimators. Uses a discrete entropy estimator. ### Multiclass Discrete labels where the value can be any integer. Examples include number of rings, number of atoms, or number of each type of bond. Uses a discrete entropy estimator. ### Continuous Continuous labels where the value can be any real number. Examples include electronic spatial extent, dipole moment, and free energy. Uses the continuous entropy estimator ## References The mathematical methods employed in this codebase are based on the following publications: - Kraskov, A.; Stögbauer, H.; Grassberger, P. Estimating mutual information. Phys. Rev. E 2004, 69, 66138. - Ross, B. C. Mutual Information between Discrete and Continuous Data Sets. PLOS ONE 2014, 9, 1–5. Continuous entropy estimation is provided by Paul Broderson's entropy estimators package (https://github.com/paulbrodersen/entropy_estimators).


زبان مورد نیاز

مقدار نام
>=3.8, <4 Python


نحوه نصب


نصب پکیج whl exmoset-0.1.0:

    pip install exmoset-0.1.0.whl


نصب پکیج tar.gz exmoset-0.1.0:

    pip install exmoset-0.1.0.tar.gz