معرفی شرکت ها


evolutionary-forest-0.2.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

An open source python library for automated feature engineering based on Genetic Programming
ویژگی مقدار
سیستم عامل -
نام فایل evolutionary-forest-0.2.2
نام evolutionary-forest
نسخه کتابخانه 0.2.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Hengzhe Zhang
ایمیل نویسنده zhenlingcn@foxmail.com
آدرس صفحه اصلی https://github.com/zhenlingcn/evolutionary_forest
آدرس اینترنتی https://pypi.org/project/evolutionary-forest/
مجوز BSD license
=================== Evolutionary Forest =================== .. image:: https://img.shields.io/pypi/v/evolutionary_forest.svg :target: https://pypi.python.org/pypi/evolutionary_forest .. image:: https://img.shields.io/travis/com/zhenlingcn/evolutionaryforest.svg :target: https://www.travis-ci.com/github/zhenlingcn/EvolutionaryForest .. image:: https://readthedocs.org/projects/evolutionary-forest/badge/?version=latest :target: https://evolutionary-forest.readthedocs.io/en/latest/?version=latest :alt: Documentation Status .. image:: https://pyup.io/repos/github/zhenlingcn/evolutionary_forest/shield.svg :target: https://pyup.io/repos/github/zhenlingcn/evolutionary_forest/ :alt: Updates An open source python library for automated feature engineering based on Genetic Programming * Free software: BSD license * Documentation: https://evolutionary-forest.readthedocs.io. Introduction ---------------- Feature engineering is a long-standing issue that has plagued machine learning practitioners for many years. Deep learning techniques have significantly reduced the need for manual feature engineering in recent years. However, a critical issue is that the features discovered by deep learning methods are difficult to interpret. In the domain of interpretable machine learning, genetic programming has demonstrated to be a promising method for automated feature construction, as it can improve the performance of traditional machine learning systems while maintaining similar interpretability. Nonetheless, such a potent method is rarely mentioned by practitioners. We believe that the main reason for this phenomenon is that there is still a lack of a mature package that can automatically build features based on the genetic programming algorithm. As a result, we propose this package with the goal of providing a powerful feature construction tool for enhancing existing state-of-the-art machine learning algorithms, particularly decision-tree based algorithms. Features ---------------- * A powerful feature construction tool for generating interpretable machine learning features. * A reliable machine learning model has powerful performance on the small dataset. Installation -------------------------------- .. code:: bash pip install -U evolutionary_forest Supported Algorithms -------------------------------- * `Evolutionary Forest (TEVC 2021) <https://github.com/hengzhe-zhang/EvolutionaryForest/blob/master/experiment/methods/EF.py>`_ * `SR-Forest (TEVC 2023) <https://github.com/hengzhe-zhang/EvolutionaryForest/blob/master/experiment/methods/SRForest.py>`_ Example ---------------- An example of usage: .. code:: Python X, y = load_diabetes(return_X_y=True) x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) r = EvolutionaryForestRegressor(max_height=3, normalize=True, select='AutomaticLexicase', gene_num=10, boost_size=100, n_gen=20, n_pop=200, cross_pb=1, base_learner='Random-DT', verbose=True) r.fit(x_train, y_train) print(r2_score(y_test, r.predict(x_test))) An example of improvements brought about by constructed features: .. image:: https://raw.githubusercontent.com/zhenlingcn/EvolutionaryForest/master/docs/constructed_features.png Tutorials ---------------- Here are some nodebook examples of using Evolutionary Forest: * `Regression on Diabetes Dataset`_ .. _Regression on Diabetes Dataset: https://github.com/hengzhe-zhang/EvolutionaryForest/blob/master/tutorial/diabetes_regression.ipynb Documentation ---------------- Tutorial: `English Version`_ | `中文版本`_ .. _English Version: https://github.com/zhenlingcn/EvolutionaryForest/blob/master/tutorial/diabetes_regression.ipynb .. _中文版本: https://github.com/zhenlingcn/EvolutionaryForest/blob/master/tutorial/diabetes_regression-CN.md Credits --------------- This package was created with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template. .. _Cookiecutter: https://github.com/audreyr/cookiecutter .. _`audreyr/cookiecutter-pypackage`: https://github.com/audreyr/cookiecutter-pypackage Citation --------------- Please cite our paper if you find it helpful :) .. code:: @article{zhang2021evolutionary, title={An Evolutionary Forest for Regression}, author={Zhang, Hengzhe and Zhou, Aimin and Zhang, Hu}, journal={IEEE Transactions on Evolutionary Computation}, volume={26}, number={4}, pages={735--749}, year={2021}, publisher={IEEE} } @article{zhang2023sr, title={SR-Forest: A Genetic Programming based Heterogeneous Ensemble Learning Method}, author={Zhang, Hengzhe and Zhou, Aimin and Chen, Qi and Xue, Bing and Zhang, Mengjie}, journal={IEEE Transactions on Evolutionary Computation}, year={2023}, publisher={IEEE} } ======= History ======= 0.1.0 (2021-05-22) ------------------ * First release on PyPI.


نیازمندی

مقدار نام
- scipy
- hdfe
- numpy
- seaborn
- matplotlib
- deap
- sympy
- pandas
- scikit-learn
- dill
- lightgbm
- smt
- pytest
- joblib
- linear-tree
- mlxtend
- sklearn2pmml
- tpot


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl evolutionary-forest-0.2.2:

    pip install evolutionary-forest-0.2.2.whl


نصب پکیج tar.gz evolutionary-forest-0.2.2:

    pip install evolutionary-forest-0.2.2.tar.gz