معرفی شرکت ها


evolearn-1.0.8


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Machine learning related GA tools.
ویژگی مقدار
سیستم عامل -
نام فایل evolearn-1.0.8
نام evolearn
نسخه کتابخانه 1.0.8
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Hindy Yuen
ایمیل نویسنده hindy888@hotmail.com
آدرس صفحه اصلی https://github.com/HindyDS/evo-learn
آدرس اینترنتی https://pypi.org/project/evolearn/
مجوز MIT
![Logo](https://github.com/HindyDS/evo-learn/blob/main/logo/evolearn.png) Evolutionary Algorithm For Machine Learning Installation ------------ To use evolearn, first install it using pip: pip install evolearn Genetic Optimization CV ---------------- To perform hyperparameter tuning using genetic algoritm, you need to first import other modules from 1) ``evolearn.hyperparameter_tuning.initialization`` 2) ``evolearn.hyperparameter_tuning.evaluation`` 3) ``evolearn.hyperparameter_tuning.selection`` 4) ``evolearn.hyperparameter_tuning.mating`` 5) ``evolearn.hyperparameter_tuning.reproduction`` 6) ``evolearn.hyperparameter_tuning.mutation`` 7) ``evolearn.hyperparameter_tuning.environment`` (optional) 8) ``evolearn.hyperparameter_tuning.genetic_hyperparameter_tuning`` Although the modules from ``environment`` are optional for you to determine to use them in your search or not, the searching might end up stopping early or not finding the ideal results. These modules can help to prevent pre-mature convergence and also control other hyperparameters for GA. For example: from evolearn.hyperparameter_tuning.initialization import Genes from evolearn.hyperparameter_tuning.evaluation import FitnessFunction from evolearn.hyperparameter_tuning.selection import (RankSelection, RouletteWheelSelection, SteadyStateSelection, TournamentSelection, StochasticUniversalSampling, BoltzmannSelection ) from evolearn.hyperparameter_tuning.mating import MatingFunction from evolearn.hyperparameter_tuning.reproduction import (KPointCrossover, LinearCombinationCrossover, FitnessProportionateAverage ) from evolearn.hyperparameter_tuning.mutation import (Boundary, Shrink ) from evolearn.hyperparameter_tuning.environment import (AdaptiveReproduction, AdaptiveMutation, Elitism ) from evolearn.hyperparameter_tuning.genetic_hyperparameter_tuning import GenesSearchCV from sklearn.ensemble import RandomForestRegressor search_space_rf = { 'max_depth':(1, 16, 'uniform'), 'n_estimators':(100, 1000, 'uniform'), 'criterion':('squared_error', 'absolute_error', 'poisson') } opt = GenesSearchCV( n_gen=10, initialization_fn=Genes(search_space=search_space_rf, pop_size=30), fitness_fn=FitnessFunction( estimator=RandomForestRegressor(n_jobs=-1), cv=3, scoring='neg_mean_absolute_error', ), selection_fn=StochasticUniversalSampling(.7), mating_fn=MatingFunction(increst_prevention=False), reproduction_fn=KPointCrossover(1), mutation_fn=Shrink(), adaptive_population=AdaptiveReproduction(10), elitism=Elitism(), adaptive_mutation=AdaptiveMutation() ) opt.fit(X_train, y_train) Max Fitness: -2023.200579609583 {'max_depth': 5, 'n_estimators': 561, 'criterion': 'absolute_error'} The choices of ``selection_fn``, ``reproduction_fn``, ``mutation_fn`` are actually up to your personal preference. One can pick what they believe are most benefit to their searching preocess. Genetic Feature Selection ------------------------- To perform feature selection using genetic algoritm, you need to first import other modules from 1) ``evolearn.feature_selection.initialization`` 2) ``evolearn.feature_selection.evaluation`` 3) ``evolearn.feature_selection.selection`` 4) ``evolearn.feature_selection.mating`` 5) ``evolearn.feature_selection.reproduction`` 6) ``evolearn.feature_selection.mutation`` 7) ``evolearn.feature_selection.environment`` (optional) 8) ``evolearn.feature_selection.genetic_feature_selection`` The modules looks similar to those modules from the ``GenesSearchCV`` section, but in fact their internal mechanisim work slightly differently. You need to be ware of importing the wrong modules when using genetic feature selection. For example: from evolearn.feature_selection.initialization import Genes from evolearn.feature_selection.evaluation import FitnessFunction from evolearn.feature_selection.selection import (RankSelection, RouletteWheelSelection, SteadyStateSelection, TournamentSelection, StochasticUniversalSampling, BoltzmannSelection ) from evolearn.feature_selection.mating import MatingFunction from evolearn.feature_selection.reproduction import KPointCrossover from evolearn.feature_selection.mutation import (BitStringMutation, ExchangeMutation, ShiftMutation ) from evolearn.feature_selection.environment import (AdaptiveReproduction, AdaptiveMutation, Elitism ) from evolearn.feature_selection.genetic_feature_selection import GeneticFeatureSelectionCV from sklearn.ensemble import RandomForestRegressor opt = GeneticFeatureSelectionCV( n_gen=10, initialization_fn=Genes(pop_size=50), fitness_fn=FitnessFunction( estimator=RandomForestRegressor(n_jobs=-1), cv=3, scoring='neg_mean_absolute_error' ), selection_fn=RouletteWheelSelection(.7), mating_fn=MatingFunction(), reproduction_fn=KPointCrossover(k=4), mutation_fn=BitStringMutation(), adaptive_population=None, elitism=None, adaptive_mutation=None ) opt.fit(X_train, y_train) print(opt.best_fitness_) print(opt.best_params_) -2797.7245589631652 {'age': True, 'sex': False, 'bmi': True, 'children': True, 'smoker': True, 'region': False}


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl evolearn-1.0.8:

    pip install evolearn-1.0.8.whl


نصب پکیج tar.gz evolearn-1.0.8:

    pip install evolearn-1.0.8.tar.gz