معرفی شرکت ها


evoflow-0.5.2-1592070199


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Genetic algorithms for humans
ویژگی مقدار
سیستم عامل -
نام فایل evoflow-0.5.2-1592070199
نام evoflow
نسخه کتابخانه 0.5.2-1592070199
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Elie Bursztein
ایمیل نویسنده evoflow@google.com
آدرس صفحه اصلی https://github.com/google/evoflow
آدرس اینترنتی https://pypi.org/project/evoflow/
مجوز Apache 2
# EvoFlow - Genetic algorithms for humans ![EvoFlow logo](https://storage.googleapis.com/evoflow/logo/evoflow-logo-768.png) ![TensorFlow](https://github.com/google-research/evoflow/workflows/TensorFlow/badge.svg) ![Numpy](https://github.com/google-research/evoflow/workflows/Numpy/badge.svg) ## You have just found EvoFlow EvoFlow is a modern hardware accelerated genetic algorithm framework that recast genetic algorithm programing as a dataflow computation on tensors. Conceptually is very similar to how Tensorflow & Keras are approaching deep-learning so if you have experience with any of those you will feel right at home. Under the hood, EvoFlow leverage Tensorflow or Cupy to provide hardware accelerated genetic operations. If you don't have a GPU, you can run EvoFlow on Google Colab or it will just work fine on your CPU. ## Getting started in 30 seconds 1. Install EvoFlow: `pip install evoflow` 2. Head to our [hello world notebook](https://github.com/google-research/evoflow/blob/master/notebooks/onemax.ipynb) that will shows you how to use EvoFlow to solve the classic OneMax problem. ## Tutorials The following tutorials are availables | Problem | Description | Key concepts showcased | | ----------------------- | ----------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------ | | OneMax | Maximize the number of ones in a chromosome | <ul><li>`EvoFlow` core API</li><li>`RandomMutation` OP</li><li> `UniformCrossOver` Op</li><li>Evolution model construction</li><li>`Results` basic usage</li></ul> | | Travel Salesman problem | Visit each city once while minimizing the distance traveled | <ul><li>Custom `Fitness function`</li><li>Genes permuting Ops: `Shuffle` and `Reverse`</li><li>Evolution model programatic construction</li></ul> | Genetic Algorithm are used to solve a [wide variety of problems](https://en.wikipedia.org/wiki/List_of_genetic_algorithm_applications) ## Deep-learning versus Evoluationary algorithms Generally you want to use Deep-learning when the problem is continious/smooth and evoluationary algorithms when the problem is discrete. For example voice generation is smooth and solving (non-linear) equations is discrete. Concretely this means that the fitness functions you use to express what constraint to solve are very similar to the loss functions in deep-learning except they don't need to be differentiable and therefore can perform arbitrary computation. However the cost of fitness function increased expressiveness and flexibility compared to neural network loss is that we don't have the gradients to help guide the model convergence and therefore coverging is more computationaly expensive which is why having a hardware accelerated framework is essential. ## Genetic Algorithm terminology - **Gene**: atomic unit. Equivalent to a neuron in deep-learning. - **Chromosome**: ordered list of gene(s). - **Genotype**: collection of chromosome(s). Used when the problem requires to maximizes multiples fitness function at once. - **Population of x**: collection of chromosomes or genotypes. That is what makes a Tensor. - **Generation**: One round of evolution. Equivalent to an epoch in deep-learning. - **Fitness function**: Function that evaluate how good/fit a given chromosome is. this is equivalent to the loss function in deep learning except it doesn't need to be differentiable and aim to be maximized. ### EvoFlow Terminology - **Evoluation op**: Operation performed on a population of chromosome to make them evolve. Common ops includes various type of Chromosomal crossovers and Chromosomal mutations. Equivalent to deep-learning layers (e.g a convolution layer). - **Evolution model**: Directed graph of evolutionary ops that is used to evolve the population. This is equivalent to a model architecture in deep-learning settings. ## Disclaimer This is not an official Google product.


نیازمندی

مقدار نام
- networkx
- numpy
- tqdm
- tabulate
- termcolor
- matplotlib
- altair
>=2.2.0 tensorflow
- pandas
- perfcounters


زبان مورد نیاز

مقدار نام
>=3 Python


نحوه نصب


نصب پکیج whl evoflow-0.5.2-1592070199:

    pip install evoflow-0.5.2-1592070199.whl


نصب پکیج tar.gz evoflow-0.5.2-1592070199:

    pip install evoflow-0.5.2-1592070199.tar.gz