معرفی شرکت ها


evodcinv-2.0.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Inversion of dispersion curves using Evolutionary Algorithms
ویژگی مقدار
سیستم عامل -
نام فایل evodcinv-2.0.1
نام evodcinv
نسخه کتابخانه 2.0.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Keurfon Luu
ایمیل نویسنده -
آدرس صفحه اصلی https://github.com/keurfonluu/evodcinv
آدرس اینترنتی https://pypi.org/project/evodcinv/
مجوز BSD 3-Clause License
evodcinv ======== |License| |Stars| |Pyversions| |Version| |Downloads| |Code style: black| |Codacy Badge| |Codecov| |Build| |Travis| |DOI| **evodcinv** is a Python library to invert surface wave dispersion data (e.g., phase velocity dispersion curves) for an isotropic layered velocity model using Evolutionary Algorithms. It relies on `stochopy <https://github.com/keurfonluu/stochopy>`__ for the evolutionary optimizers while forward modeling is heavy-lifted by `disba <https://github.com/keurfonluu/disba>`__. .. figure:: https://raw.githubusercontent.com/keurfonluu/evodcinv/master/.github/sample.png :alt: sample :width: 100% :align: center Inversion of phase velocity dispersion curve (fundamental mode). Features -------- Invertible data curves: - Love-wave phase and/or group velocity dispersion curves, - Rayleigh-wave phase and/or group velocity dispersion curves, - Rayleigh-wave ellipticity (experimental). Installation ------------ The recommended way to install **evodcinv** and all its dependencies is through the Python Package Index: .. code:: bash pip install evodcinv --user Otherwise, clone and extract the package, then run from the package location: .. code:: bash pip install . --user To test the integrity of the installed package, check out this repository and run: .. code:: bash pytest Documentation ------------- Refer to the online `documentation <https://keurfonluu.github.io/evodcinv/>`__ for detailed description of the API and examples. Alternatively, the documentation can be built using `Sphinx <https://www.sphinx-doc.org/en/master/>`__: .. code:: bash pip install -r doc/requirements.txt sphinx-build -b html doc/source doc/build Usage ----- The following example inverts a Rayleigh-wave phase velocity dispersion curve (fundamental mode). .. code:: python from evodcinv import EarthModel, Layer, Curve # Initialize model model = EarthModel() # Build model search boundaries from top to bottom # First argument is the bounds of layer's thickness [km] # Second argument is the bounds of layer's S-wave velocity [km/s] model.add(Layer([0.001, 0.1], [0.1, 3.0])) model.add(Layer([0.001, 0.1], [0.1, 3.0])) # Configure model model.configure( optimizer="cpso", # Evolutionary algorithm misfit="rmse", # Misfit function type optimizer_args={ "popsize": 10, # Population size "maxiter": 100, # Number of iterations "workers": -1, # Number of cores "seed": 0, }, ) # Define the dispersion curves to invert # period and velocity are assumed to be data arrays curves = [Curve(period, velocity, 0, "rayleigh", "phase")] # Run inversion res = model.invert(curves) print(res) Expected output: .. code-block:: -------------------------------------------------------------------------------- Best model out of 1000 models (1 run) Velocity model Model parameters ---------------------------------------- ------------------------------ d vp vs rho d vs nu [km] [km/s] [km/s] [g/cm3] [km] [km/s] [-] ---------------------------------------- ------------------------------ 0.0296 0.5033 0.2055 2.0000 0.0296 0.2055 0.4000 1.0000 1.8191 1.0080 2.0000 - 1.0080 0.2785 ---------------------------------------- ------------------------------ Number of layers: 2 Number of parameters: 5 Best model misfit: 0.0153 -------------------------------------------------------------------------------- Contributing ------------ Please refer to the `Contributing Guidelines <https://github.com/keurfonluu/evodcinv/blob/master/CONTRIBUTING.rst>`__ to see how you can help. This project is released with a `Code of Conduct <https://github.com/keurfonluu/evodcinv/blob/master/CODE_OF_CONDUCT.rst>`__ which you agree to abide by when contributing. .. |License| image:: https://img.shields.io/github/license/keurfonluu/evodcinv :target: https://github.com/keurfonluu/evodcinv/blob/master/LICENSE .. |Stars| image:: https://img.shields.io/github/stars/keurfonluu/evodcinv?logo=github :target: https://github.com/keurfonluu/evodcinv .. |Pyversions| image:: https://img.shields.io/pypi/pyversions/evodcinv.svg?style=flat :target: https://pypi.org/pypi/evodcinv/ .. |Version| image:: https://img.shields.io/pypi/v/evodcinv.svg?style=flat :target: https://pypi.org/project/evodcinv .. |Downloads| image:: https://pepy.tech/badge/evodcinv :target: https://pepy.tech/project/evodcinv .. |Code style: black| image:: https://img.shields.io/badge/code%20style-black-000000.svg?style=flat :target: https://github.com/psf/black .. |Codacy Badge| image:: https://img.shields.io/codacy/grade/bd53f27ac85d419d996c434353f08760.svg?style=flat :target: https://www.codacy.com/gh/keurfonluu/evodcinv/dashboard?utm_source=github.com&amp;utm_medium=referral&amp;utm_content=keurfonluu/evodcinv&amp;utm_campaign=Badge_Grade .. |Codecov| image:: https://img.shields.io/codecov/c/github/keurfonluu/evodcinv.svg?style=flat :target: https://codecov.io/gh/keurfonluu/evodcinv .. |DOI| image:: https://zenodo.org/badge/DOI/10.5281/zenodo.5775193.svg?style=flat :target: https://doi.org/10.5281/zenodo.5775193 .. |Build| image:: https://img.shields.io/github/workflow/status/keurfonluu/evodcinv/Python%20package :target: https://github.com/keurfonluu/evodcinv .. |Travis| image:: https://img.shields.io/travis/com/keurfonluu/evodcinv/master?label=docs :target: https://keurfonluu.github.io/evodcinv/


نیازمندی

مقدار نام
- importlib-metadata
- numpy
- matplotlib
- joblib
- h5py
- progress
>=0.6.1 disba
>=2.2.0 stochopy


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl evodcinv-2.0.1:

    pip install evodcinv-2.0.1.whl


نصب پکیج tar.gz evodcinv-2.0.1:

    pip install evodcinv-2.0.1.tar.gz