معرفی شرکت ها


evfuncs-0.3.5


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Functions for working with files created by the EvTAF program and the evsonganaly GUI
ویژگی مقدار
سیستم عامل -
نام فایل evfuncs-0.3.5
نام evfuncs
نسخه کتابخانه 0.3.5
نگهدارنده []
ایمیل نگهدارنده []
نویسنده -
ایمیل نویسنده David Nicholson <nickledave@users.noreply.github.com>
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/evfuncs/
مجوز -
[![Build Status](https://github.com/NickleDave/evfuncs/actions/workflows/ci.yml/badge.svg) [![DOI](https://zenodo.org/badge/158776329.svg)](https://zenodo.org/badge/latestdoi/158776329) [![PyPI version](https://badge.fury.io/py/evfuncs.svg)](https://badge.fury.io/py/evfuncs) [![License](https://img.shields.io/badge/License-BSD%203--Clause-blue.svg)](https://opensource.org/licenses/BSD-3-Clause) # *ev*funcs Functions for working with files created by EvTAF and the evsonganaly GUI. In case you need to work with those files in Python 😊😊😊 (see "Usage" below). The first work published with data collected using EvTAF and evsonganaly is in this paper: Tumer, Evren C., and Michael S. Brainard. "Performance variability enables adaptive plasticity of ‘crystallized’adult birdsong." Nature 450.7173 (2007): 1240. <https://www.nature.com/articles/nature06390> These functions are translations to Python of the original functions written in MATLAB (copyright Mathworks) by Evren Tumer (shown below). <p style="text-align:center;"> <img src="./doc/ev_ev_ev.png" alt="Image of Evren"> </p> ### Installation #### with `pip` ```console $ pip install evfuncs ``` #### with `conda` ```console $ conda install evfuncs -c conda-forge ``` ### Usage The main purpose for developing these functions in Python was to work with files of Bengalese finch song in this data repository: <https://figshare.com/articles/Bengalese_Finch_song_repository/4805749> Using `evfuncs` with that repository, you can load the `.cbin` audio files ... ```Python >>> import evfuncs >>> rawsong, samp_freq = evfuncs.load_cbin('gy6or6_baseline_230312_0808.138.cbin') ``` ... and the annotation in the `.not.mat` files ... ```Python >>> notmat_dict = evfuncs.load_notmat('gy6or6_baseline_230312_0808.138.cbin') ``` (or, using the `.not.mat` filename directly) ```Python >>> notmat_dict = evfuncs.load_notmat('gy6or6_baseline_230312_0808.138.not.mat') ``` ...and you should be able to reproduce the segmentation of the raw audio files of birdsong into syllables and silent periods, using the segmenting parameters from a .not.mat file and the simple algorithm applied by the SegmentNotes.m function. ```Python >>> smooth = evfuncs.smooth_data(rawsong, samp_freq) >>> threshold = notmat_dict['threshold'] >>> min_syl_dur = notmat_dict['min_dur'] / 1000 >>> min_silent_dur = notmat_dict['min_int'] / 1000 >>> onsets, offsets = evfuncs.segment_song(smooth, samp_freq, threshold, min_syl_dur, min_silent_dur) >>> import numpy as np >>> np.allclose(onsets, notmat_dict['onsets']) True ``` (*Note that this test would return `False` if the onsets and offsets in the .not.mat annotation file had been modified, e.g., a user of the evsonganaly GUI had edited them, after they were originally computed by the SegmentNotes.m function.*) `evfuncs` is used to load annotations by ['crowsetta'](https://github.com/NickleDave/crowsetta), a data-munging tool for building datasets of vocalizations that can be used to train machine learning models. Two machine learning libraries that can use those datasets are: [`hybrid-vocal-classifier`](https://hybrid-vocal-classifier.readthedocs.io/en/latest/), and [`vak`](https://github.com/NickleDave/vak). ### Getting Help Please feel free to raise an issue here: https://github.com/NickleDave/evfuncs/issues ### License [BSD License](./LICENSE). ### Citation Please cite this software as shown below. To get the most up-to-date, automatically-generated citation, please click "Cite this repository" on the upper right side of the page. bibtex: ``` @software{Nicholson_evfuncs_2021, author = {Nicholson, David}, doi = {10.5281/zenodo.4584209}, license = {BSD-3-Clause}, month = {3}, title = {{evfuncs}}, url = {https://github.com/NickleDave/evfuncs}, version = {0.3.2.post1}, year = {2021} ``` APA: ``` Nicholson, D. (2021). evfuncs (Version 0.3.2.post1) [Computer software]. https://doi.org/10.5281/zenodo.4584209 ``` ### Build Status [![Build Status](https://travis-ci.com/NickleDave/evfuncs.svg?branch=master)](https://travis-ci.com/NickleDave/evfuncs)


نیازمندی

مقدار نام
=1.18. numpy
=1.2. scipy
=6.2. pytest


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl evfuncs-0.3.5:

    pip install evfuncs-0.3.5.whl


نصب پکیج tar.gz evfuncs-0.3.5:

    pip install evfuncs-0.3.5.tar.gz