معرفی شرکت ها


evalkit-api-client-0.0.1a1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

This is a library for making requests to a EvaluationKIT API.
ویژگی مقدار
سیستم عامل -
نام فایل evalkit-api-client-0.0.1a1
نام evalkit-api-client
نسخه کتابخانه 0.0.1a1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Kyle Lawlor
ایمیل نویسنده klawlor419@gmail.com
آدرس صفحه اصلی https://github.com/lcary/canvas-lms-tools
آدرس اینترنتی https://pypi.org/project/evalkit-api-client/
مجوز Apache
Evalkit API Client Library ========================== [Overview](#overview) [Testing](#testing) [Documentation](#documentation) [Installation](#installation) [Usage](#usage) [Contributing](#contributing) [References](#references) Overview -------- This is a library for making requests to an EvaluationKit API. Testing ------- This project is tested with [tox](https://tox.readthedocs.io/en/latest/). Run the tox command to run checks and unit tests: ``` $ tox ``` By default, this project's tox runs: * [flake8](http://flake8.pycqa.org/en/latest/) * [mypy](https://github.com/python/mypy) * [pytest](https://docs.pytest.org/en/latest/) To create test coverage reports: ``` $ tox -e cov ``` Deployment ---------- Deployment to pypi is done with tox: ``` $ tox -e deploy ``` Make sure to bump the version in setup.py before deploying. Documentation ------------- This project has Sphinx documentation at the following url: https://lcary.github.io/canvas-lms-tools/ The EvaluationKit API documentation is also very useful: Installation ------------ To install, use pip: pip install evalkit_api_client Or clone the repo: git clone https://github.com/lcary/canvas-lms-tools.git cd canvas-lms-tools/evalkit_api_client python setup.py install Usage ----- Adding the client as a dependency in your project's `requirements.txt` file is the intended way to use the client. #### REPL Example ``` $ python >>> from evalkit_api_client.v1_client import EvalKitAPIv1 >>> url = 'https://sub-account.evaluationkit.com/api/v1' >>> token = 'xxxxxxxxxxxxxxxxxxxTHISxISxNOTxAxREALxTOKENxxxxxxxxxxxxxxxxxxxxx' >>> api = EvalKitAPIv1(url, token) >>> projects = api.get_projects().json() >>> len(projects.json()) # number of projects in sub-account >>> for p in projects.['resultList']: ... print(p['id'], p['title']) ... 49400 Test Evaluation A 57600 Test Eval B ``` #### Script Example This very simple example requires a few environment variables. The API URL and token should be something like: ``` EVALKIT_API_URL=https://sub-account.evaluationkit.com/api/v1 EVALKIT_API_TOKEN=xxxxxxxxxxxxxxxxxxxTHISxISxNOTxAxREALxTOKENxxxxxxxxxxxxxxxxxxxxx ``` The recommended approach is to use a config file with limited read permissions instead of environment variables, but bear with me here. Once installed in your project via pip, use as follows: ```python from os import environ from pprint import pprint from evalkit_api_client.v1_client import EvalKitAPIv1 url = environ.get('EVALKIT_API_URL') token = environ.get('EVALKIT_API_TOKEN') api = EvalKitAPIv1(url, token) projects = api.get_projects() print(projects.json()) ``` #### EvalKitAPIv1 This library is meant to be imported into your code. The `EvalKitAPIv1` client object requires a `api_url` argument and a `api_token` argument. The `api_url` should likely be defined in a configuration file, and should be the full API URL without the endpoint, e.g. `https://sub.evaluationkit.com/api/v1/`. The `api_token` should similarly be defined in a config file, and is the token generated for a given subaccount in EvaluationKit. Refer to the client interface [documentation](#documentation) for more information. Contributing ------------ #### Building Wheels Building the wheel: python setup.py bdist_wheel #### Installing Wheels How to install the client for testing: pip uninstall evalkit_api_client || echo "Already uninstalled." pip install --no-index --find-links=dist evalkit_api_client Alternatively, install by specifying the full or relative path to the `.whl` file: pip install --no-index /path/to/canvas-lms-tools/evalkit_api_client/dist/evalkit_api_client-<version>-py2.py3-none-any.whl (You may need to `pip install wheel` first if you are installing from another project. Consult [stack overflow](https://stackoverflow.com/questions/28002897/wheel-file-installation) for more help.) #### Sphinx Docs Creating the docs: cd docs pip install -r requirements.txt pip install evalkit_api_client make html open build/html/index.html Deploying the docs to GitHub pages: git checkout master git pull git branch -D gh-pages git checkout -b gh-pages rm -rf ./* touch .nojekyll git checkout master evalkit_api_client/docs/ < build the docs as above > mv evalkit_api_client/docs/build/html/* ./ rm -rf evalkit_api_client git add -A git commit git push -f origin gh-pages For more info see the [GitHub Pages documentation](https://pages.github.com/), the [Sphinx docs](http://www.sphinx-doc.org/en/master/contents.html), or the following [script docs](http://www.willmcginnis.com/2016/02/29/automating-documentation-workflow-with-sphinx-and-github-pages/). References ---------- This project was originally created with the following "cookiecutter" tool: https://github.com/wdm0006/cookiecutter-pipproject


نیازمندی

مقدار نام
==2.19.1 requests


نحوه نصب


نصب پکیج whl evalkit-api-client-0.0.1a1:

    pip install evalkit-api-client-0.0.1a1.whl


نصب پکیج tar.gz evalkit-api-client-0.0.1a1:

    pip install evalkit-api-client-0.0.1a1.tar.gz