معرفی شرکت ها


eulerpi-0.3.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

The eulerian parameter inference (eulerpi) returns a parameter distribution, which is consistent with the observed data by solving the inverse problem directly. In the case of a one-to-one mapping, this is the true underlying distribution.
ویژگی مقدار
سیستم عامل -
نام فایل eulerpi-0.3.1
نام eulerpi
نسخه کتابخانه 0.3.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Lars Kaiser
ایمیل نویسنده lars.g.kaiser@gmx.de
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/eulerpi/
مجوز -
<!-- # Euler Parameter Inference --> <h1></h1> ![EPI](https://github.com/Systems-Theory-in-Systems-Biology/EPI/blob/main/epi.png?raw=True "logo") <!-- The badges we want to display --> [![pages-build-deployment](https://github.com/Systems-Theory-in-Systems-Biology/EPI/actions/workflows/pages/pages-build-deployment/badge.svg)](https://github.com/Systems-Theory-in-Systems-Biology/EPI/actions/workflows/pages/pages-build-deployment) [![Build & Publish Documentation](https://github.com/Systems-Theory-in-Systems-Biology/EPI/actions/workflows/sphinx.yml/badge.svg)](https://github.com/Systems-Theory-in-Systems-Biology/EPI/actions/workflows/sphinx.yml) [![Publish to PyPI](https://github.com/Systems-Theory-in-Systems-Biology/EPI/actions/workflows/publish.yml/badge.svg)](https://github.com/Systems-Theory-in-Systems-Biology/EPI/actions/workflows/publish.yml) [![pytest](https://img.shields.io/github/actions/workflow/status/Systems-Theory-in-Systems-Biology/EPI/ci.yml?label=pytest&logo=pytest)](https://github.com/Systems-Theory-in-Systems-Biology/EPI/actions/workflows/ci.yml) [![flake8](https://img.shields.io/badge/flake8-checked-blue.svg)](https://flake8.pycqa.org/) [![black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](./LICENSE.md) [![Python](https://img.shields.io/badge/python-3.10-purple.svg)](https://www.python.org/) ![PyPI](https://img.shields.io/pypi/v/eulerpi) Euler Parameter Inference (EPI) is a Python package for inverse parameter inference. It provides an implementation of the EPI algorithm, which takes observed data and a model as input and returns a parameter distribution consistent with the observed data by solving the inverse problem directly. In the case of a one-to-one mapping, this is the true underlying distribution. ## Documentation The full documentation to this software, including a detailed tutorial on how to use EPI and the api documentation, can be found under [Documentation](https://Systems-Theory-in-Systems-Biology.github.io/EPI/). ## Features EPI supports - SBML ode models - User provided models - Models with automatic differentation using jax ## Installation The package is available on pypi and can be installed with: ```bash pip install eulerpi ``` Make sure that you have the following C++ libraries installed ```bash sudo apt install -y swig libblas-dev libatlas-base-dev libhdf5-dev ``` You can also build the library from the latest source code by following the [Development Quickstart Guide](./DEVELOPMENT.md#quickstart). ## Using the library To use EPI, derive your model from the `Model` class and implement the abstract functions. Here's an example code snippet: ```python # my_model.py import jax.numpy as jnp from eulerpi.core.model import Model class MyModel(Model): param_dim = N # The dimension of a parameter point data_dim = M # The dimension of a data point def forward(self, param): return jnp.array(...) def jacobian(self, param): return jnp.array(...) ``` To evaluate the model and infer the parameter distribution, call: ```python from eulerpi.sampling import inference from my_model import MyModel central_param = np.array([0.5, -1.5, ...]) param_limits = np.array([[0.0, 1.0], [-3.0, 0.0], ...]) model = MyModel(central_param, param_limits) inference(model=model, data="my_data.csv") ``` The `data` argument can be a numpy-2d-array or a PathLike object that points to a CSV file. In the example shown above, the CSV file `my_data.csv` should contain the data in the following format: ```text datapoint_dim1, datapoint_dim2, datapoint_dim3, ..., datapoint_dimN datapoint_dim1, datapoint_dim2, datapoint_dim3, ..., datapoint_dimN datapoint_dim1, datapoint_dim2, datapoint_dim3, ..., datapoint_dimN ... datapoint_dim1, datapoint_dim2, datapoint_dim3, ..., datapoint_dimN ``` This corresponds to a matrix with the shape `nSamples x data_dim`. For more available options and parameters for the `inference` method, please refer to the [api documentation](https://systems-theory-in-systems-biology.github.io/EPI/eulerpi.core.html#module-eulerpi.core.inference). Note that the inference can be done with grid-based methods (dense grids, sparse grids) or sampling methods (mcmc). The results are stored in the following location: * `./Applications/<ModelName>/.../OverallParams.csv` * `./Applications/<ModelName>/.../OverallSimResults.csv` * `./Applications/<ModelName>/.../OverallDensityEvals.csv` These files contain the sampled parameters, the corresponding data points obtained from the model forward pass, and the corresponding density evaluation.


نیازمندی

مقدار نام
>=0.4.8,<0.5.0 jax
>=1.24.2,<2.0.0 numpy
>=3.7.1,<4.0.0 matplotlib
>=0.3.1,<0.4.0 diffrax
>=3.1.4,<4.0.0 emcee
>=0.4.7,<0.5.0 jaxlib
>=4.65.0,<5.0.0 tqdm
>=0.4.2,<0.5.0 seedir
>=0.2.14,<0.3.0 yfinance
>=0.16.1,<0.17.0 amici
>=1.2.2,<2.0.0 scikit-learn


زبان مورد نیاز

مقدار نام
>=3.8.1,<4.0.0 Python


نحوه نصب


نصب پکیج whl eulerpi-0.3.1:

    pip install eulerpi-0.3.1.whl


نصب پکیج tar.gz eulerpi-0.3.1:

    pip install eulerpi-0.3.1.tar.gz