معرفی شرکت ها


etna-ts-1.3.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

ETNA is the first python open source framework of Tinkoff.ru AI Center. It is designed to make working with time series simple, productive, and fun.
ویژگی مقدار
سیستم عامل -
نام فایل etna-ts-1.3.1
نام etna-ts
نسخه کتابخانه 1.3.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Andrey Alekseev
ایمیل نویسنده an.alekseev@tinkoff.ru
آدرس صفحه اصلی https://github.com/tinkoff-ai/etna-ts
آدرس اینترنتی https://pypi.org/project/etna-ts/
مجوز Apache 2.0
# ETNA Time Series Library [![Pipi version](https://img.shields.io/pypi/v/etna-ts.svg)](https://pypi.org/project/etna-ts/) [![PyPI Status](https://static.pepy.tech/personalized-badge/etna-ts?period=total&units=international_system&left_color=grey&right_color=green&left_text=Downloads)](https://pepy.tech/project/etna-ts) [![Coverage](https://img.shields.io/codecov/c/github/tinkoff-ai/etna-ts)](https://codecov.io/gh/tinkoff-ai/etna-ts) [![Telegram](https://img.shields.io/badge/channel-telegram-blue)](https://t.me/etna_support) [Homepage](https://etna.tinkoff.ru) | [Documentation](https://etna-docs.netlify.app/) | [Tutorials](https://github.com/tinkoff-ai/etna-ts/tree/master/examples) | [Contribution Guide](https://github.com/tinkoff-ai/etna-ts/blob/master/CONTRIBUTING.md) | [Release Notes](https://github.com/tinkoff-ai/etna-ts/releases) ETNA is an easy-to-use time series forecasting framework. It includes built in toolkits for time series preprocessing, feature generation, a variety of predictive models with unified interface - from classic machine learning to SOTA neural networks, models combination methods and smart backtesting. ETNA is designed to make working with time series simple, productive, and fun. ETNA is the first python open source framework of [Tinkoff.ru](https://www.tinkoff.ru/eng/) Artificial Intelligence Center. The library started as an internal product in our company - we use it in over 10+ projects now, so we often release updates. Contributions are welcome - check our [Contribution Guide](https://github.com/tinkoff-ai/etna-ts/blob/master/CONTRIBUTING.md). ## Installation ETNA is on [PyPI](https://pypi.org/project/etna-ts), so you can use `pip` to install it. ```bash pip install --upgrade pip pip install etna-ts ``` ## Get started Here's some example code for a quick start. ```python import pandas as pd from etna.datasets.tsdataset import TSDataset from etna.models import ProphetModel # Read the data df = pd.read_csv("examples/data/example_dataset.csv") # Create a TSDataset df = TSDataset.to_dataset(df) ts = TSDataset(df, freq="D") # Choose a horizon HORIZON = 8 # Fit the model model = ProphetModel() model.fit(ts) # Make the forecast future_ts = ts.make_future(HORIZON) forecast_ts = model.forecast(future_ts) ``` ## Tutorials We have also prepared a set of tutorials for an easy introduction: | Notebook | Interactive launch | |:----------|------:| | [Get started](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/get_started.ipynb) | [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/get_started.ipynb) | | [Backtest](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/backtest.ipynb) | [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/backtest.ipynb) | | [EDA](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/EDA.ipynb) | [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/EDA.ipynb) | | [Outliers](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/outliers.ipynb) | [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/outliers.ipynb) | | [Clustering](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/clustering.ipynb) | [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/clustering.ipynb) | | [Deep learning models](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/NN_examples.ipynb) | [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/NN_examples.ipynb) | | [Ensembles](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/ensembles.ipynb) | [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/ensembles.ipynb) | ## Documentation ETNA documentation is available [here](https://etna-docs.netlify.app/). ## Acknowledgments ### ETNA.Team [Alekseev Andrey](https://github.com/iKintosh), [Shenshina Julia](https://github.com/julia-shenshina), [Gabdushev Martin](https://github.com/martins0n), [Kolesnikov Sergey](https://github.com/Scitator), [Bunin Dmitriy](https://github.com/Mr-Geekman), [Chikov Aleksandr](https://github.com/alex-hse-repository), [Barinov Nikita](https://github.com/diadorer), [Romantsov Nikolay](https://github.com/WinstonDovlatov), [Makhin Artem](https://github.com/Ama16), [Denisov Vladislav](https://github.com/v-v-denisov), [Mitskovets Ivan](https://github.com/imitskovets), [Munirova Albina](https://github.com/albinamunirova) ### ETNA.Contributors [Levashov Artem](https://github.com/soft1q), [Podkidyshev Aleksey](https://github.com/alekseyen) ## License Feel free to use our library in your commercial and private applications. ETNA is covered by [Apache 2.0](/LICENSE). Read more about this license [here](https://choosealicense.com/licenses/apache-2.0/)


نیازمندی

مقدار نام
>=0.24.1,<0.25.0 scikit-learn
>=1,<2 pandas
>=0.25,<0.26 catboost
==1.1.5 ruptures
>=0.53.1,<0.54.0 numba
>=0.11.1,<0.12.0 seaborn
>=0.12.2,<0.13.0 statsmodels
>=0.3.4,<0.4.0 dill
>=0.10.2,<0.11.0 toml
>=0.5.3,<0.6.0 loguru
>=1.0.1-dev167,<2.0.0 saxpy
>=0.2.0,<0.3.0 hydra-slayer
>=0.4.0,<0.5.0 typer
>=1.0,<2.0) prophet
>=1.8.0,<1.9.0) torch
==0.8.5) pytorch-forecasting
>=0.12.2,<0.13.0) wandb
>=0.0.1,<0.0.2) sphinx-mathjax-offline
>=0.8.2,<0.9.0) nbsphinx
>=3.5.1,<4.0.0) Sphinx
>=1.1.0,<2.0.0) numpydoc
>=0.5.1,<0.6.0) sphinx-rtd-theme
>=0.14.0,<0.15.0) myst-parser
>=3.1.20,<4.0.0) GitPython
>=6.2,<7.0) pytest
>=5.4,<6.0) coverage
>=2.11.1,<3.0.0) pytest-cov
==21.9b0) black
>=5.8.0,<6.0.0) isort
>=3.9.2,<4.0.0) flake8
>=0.12.1,<0.13.0) pep8-naming
>=1.6.0,<2.0.0) flake8-docstrings
>=0.910,<0.911) mypy
>=6.0.0,<7.0.0) types-PyYAML
>=8.0.1,<9.0.0) click
>=2.13.0,<3.0.0) semver
>=7.6.5,<8.0.0 ipywidgets
xtr jupyter;
xtr nbconvert;
>=2.1.1,<3.0.0 omegaconf


زبان مورد نیاز

مقدار نام
>=3.6.2,<3.9.0 Python


نحوه نصب


نصب پکیج whl etna-ts-1.3.1:

    pip install etna-ts-1.3.1.whl


نصب پکیج tar.gz etna-ts-1.3.1:

    pip install etna-ts-1.3.1.tar.gz