معرفی شرکت ها


estream-0.0.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

An E-Stream implementation in Python
ویژگی مقدار
سیستم عامل -
نام فایل estream-0.0.3
نام estream
نسخه کتابخانه 0.0.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Chanon Jenakom
ایمیل نویسنده chanonjenakom@gmail.com
آدرس صفحه اصلی https://github.com/mickeycj/estream
آدرس اینترنتی https://pypi.org/project/estream/
مجوز -
.. image:: https://img.shields.io/pypi/v/estream.svg :target: https://pypi.python.org/pypi/estream :alt: PyPI Version .. image:: https://img.shields.io/pypi/l/estream.svg :target: https://github.com/mickeycj/estream/blob/master/LICENSE :alt: License .. image:: https://travis-ci.org/mickeycj/estream.svg :target: https://travis-ci.org/mickeycj/estream :alt: Travis CI Build Status ==================================== An E-Stream implementation in Python ==================================== E-Stream is an evolution-based technique for stream clustering which supports five behaviors: 1. Appearance 2. Disappearance 3. Self-evolution 4. Merge 5. Split These behaviors are achieved by representing each cluster as a *Fading Cluster Structure with Histogram (FCH)*, utilizing a histogram for each feature of the data. The details for the underlying concepts can be found `here <https://www.researchgate.net/publication/221571035_E-Stream_Evolution-Based_Technique_for_Stream_Clustering>`_: Udommanetanakit, K, Rakthanmanon, T, Waiyamai, K, *E-Stream: Evolution-Based Technique for Stream Clustering*, Advanced Data Mining and Applications: Third International Conference, 2007 ------------------- How to use E-Stream ------------------- The ``estream`` package aims to be substibutable with ``sklearn`` classes so it can be used interchangably with other transformers with similar API. .. code-block:: python from estream import EStream from sklearn.datasets.samples_generator import make_blobs estream = EStream() data, _ = make_blobs() estream.fit(data) E-Stream contains a number of parameters that can be set; the major ones are as follows: - ``max_clusters``: This limits the number of clusters the clustering can have before the existing clusters have to be merged. The default is set to *10*. - ``stream_speed/decay_rate``: These determine the fading factor of the clusters. In this implementation, the fading function is constant derived from the default values of *10* and *0.1*, respectively. - ``remove_threshold``: This sets the lower bound for each cluster's weight before they are considered to be removed. The default is set to *0.1*. - ``merge_threshold``: This determines whether two close clusters can be merged togther. The default is set to *1.25*. - ``radius_threshold``: This determines the minimum range from an existing cluster that a new data must be in order to be merged into one. The default is set to *3.0*. - ``active_threshold``: This sets the minimum weight of each cluster before they are considered active. The default is set to *5.0*. An example of setting these parameters: .. code-block:: python from estream import EStream from sklearn.datasets.samples_generator import make_blobs estream = EStream(max_clusters=5, merge_threshold=0.5, radius_threshold=1.5, active_threshold=3.0) data, _ = make_blobs() estream.fit(data) ------------ Installation ------------ Currently, the package is only available through either ``PyPI``: .. code-block:: bash pip install estream or a manual install: .. code-block:: bash wget https://github.com/mickeycj/estream/archive/master.zip unzip master.zip rm master.zip cd estream-master python setup.py install -------------- Help & Support -------------- Currently, there is no dedicated documentation available, so any questions or issues can be asked via my `email <chanonjenakom@gmail.com>`_. -------- Citation -------- If you make use of this software for your work, please cite the paper from the Advanced Data Mining and Applications: Third International Conference: .. code-block:: bibtex @inproceedings{inproceedings, author = {Udommanetanakit, Komkrit, and Rakthanmanon, Thanawin and Waiyamai, Kitsana}, year = {2007}, month = {08}, pages = {605-615}, title = {E-Stream: Evolution-Based Technique for Stream Clustering}, volume = {4632}, doi = {10.1007/978-3-540-73871} } Moreover, this implementation is based on a MOA implementaion of E-Stream (and other related algorithms) by `David Ratier <https://gitub.com/ratierd>`_. The original source code can be found in this `repository <https://gitub.com/ratierd/MOA>`_. ------- License ------- The ``estream`` package is under the GNU General Public License. ------------ Contributing ------------ Contributions are always welcome! Everything ranging from code to notebooks and examples/documentation will be very valuable to the growth of this project. To contribute, please `fork this project <https://github.com/mickeycj/estream/issues#fork-destination-box>`_ , make your changes and submit a pull request. I will do my best to fix any issues and merge your code into the main branch. :Author: Chanon Jenakom :Version: 0.0.3 :Dedicated: To DAKDL, Kasetsart University


نحوه نصب


نصب پکیج whl estream-0.0.3:

    pip install estream-0.0.3.whl


نصب پکیج tar.gz estream-0.0.3:

    pip install estream-0.0.3.tar.gz