معرفی شرکت ها


essmc2-0.1.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

EssentialMC2: A Video Understanding Algorithm Framework.
ویژگی مقدار
سیستم عامل -
نام فایل essmc2-0.1.4
نام essmc2
نسخه کتابخانه 0.1.4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Alibaba Damo Academy
ایمیل نویسنده logistic1994@gmail.com
آدرس صفحه اصلی https://github.com/alibaba/EssentialMC2
آدرس اینترنتی https://pypi.org/project/essmc2/
مجوز -
# EssentialMC2 [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/essmc2)](https://pypi.org/project/essmc2/) [![PyPI](https://img.shields.io/pypi/v/essmc2)](https://pypi.org/project/essmc2) [![license](https://img.shields.io/github/license/alibaba/EssentialMC2.svg)](https://github.com/alibaba/EssentialMC2/blob/main/LICENSE) ### Introduction EssentialMC2 is a complete system to solve video understanding tasks including MHRL(representation learning), MECR2( relation reasoning) and MOSL3(openset life-long learning) powered by [DAMO Academy](https://damo.alibaba.com/?lang=en) MinD(Machine IntelligenNce of Damo) Lab. This codebase provides a comprehensive solution for video classification, temporal detection and noise learning. ### Features - Simple and easy to use - High efficiency - Include SOTA papers presented by DAMO Academy - Include various pretrained models ### Installation #### Install by pip Run `pip install essmc2`. #### Install from source ##### Requirements * Python 3.6+ * PytTorch 1.5+ Run `python setup.py install`. For each specific task, please refer to task specific README. ### Model Zoo Pretrained models can be found in the [MODEL_ZOO.md](MODEL_ZOO.md). ### SOTA Tasks - TAda! Temporally-Adaptive Convolutions for Video Understanding <br> [[Project](https://github.com/alibaba-mmai-research/TAdaConv/blob/main/projects/tada/README.md)] [[Paper](https://arxiv.org/pdf/2110.06178.pdf)] [[Website](https://tadaconv-iclr2022.github.io)] **ICLR 2022** - NGC: A Unified Framework for Learning with Open-World Noisy Data <br> [[Project](papers/ICCV2021-NGC/README.md)] [[Paper](https://arxiv.org/abs/2108.11035)] **ICCV 2021** - Self-supervised Motion Learning from Static Images <br> [[Project](papers/CVPR2021-MOSI/README.md)] [[Paper](https://openaccess.thecvf.com/content/CVPR2021/papers/Huang_Self-Supervised_Motion_Learning_From_Static_Images_CVPR_2021_paper)] **CVPR 2021** - A Stronger Baseline for Ego-Centric Action Detection <br> [[Project](https://github.com/alibaba-mmai-research/TAdaConv/blob/main/projects/epic-kitchen-tal/README.md)] [[Paper](https://arxiv.org/pdf/2106.06942)] **First-place** submission to [EPIC-KITCHENS-100 Action Detection Challenge](https://competitions.codalab.org/competitions/25926#results) - Towards Training Stronger Video Vision Transformers for EPIC-KITCHENS-100 Action Recognition <br> [[Project](https://github.com/alibaba-mmai-research/TAdaConv/blob/main/projects/epic-kitchen-ar/README.md)] [[Paper](https://arxiv.org/pdf/2106.05058)] **Second-place** submission to [EPIC-KITCHENS-100 Action Recognition challenge](https://competitions.codalab.org/competitions/25923#results) ### License EssentialMC2 is released under [MIT license](https://github.com/alibaba/EssentialMC2/blob/main/LICENSE). ```text MIT License Copyright (c) 2021 Alibaba Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ``` ### Acknowledgement EssentialMC2 is an open source project that is contributed by researchers from DAMO Academy. We appreciate users who give valuable feedbacks.


نیازمندی

مقدار نام
==2.4.0 addict
==0.32.0 yapf
- numpy
==0.0.6 opencv-transforms
==21.0 packaging
>=2.13.1 oss2
>=4.1.0 opencv-python
>=0.3.2 einops
==0.14.1 docstring-parser


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl essmc2-0.1.4:

    pip install essmc2-0.1.4.whl


نصب پکیج tar.gz essmc2-0.1.4:

    pip install essmc2-0.1.4.tar.gz