معرفی شرکت ها


eruptr-20.12.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Data needs a Makefile.
ویژگی مقدار
سیستم عامل -
نام فایل eruptr-20.12.3
نام eruptr
نسخه کتابخانه 20.12.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Jason Godden
ایمیل نویسنده jason@vulkndata.io
آدرس صفحه اصلی https://github.com/VulknData/eruptr
آدرس اینترنتی https://pypi.org/project/eruptr/
مجوز gpl-3.0
Don't ETL or ELT. LET your data be free. # VulknData Eruptr ## Data needs a Makefile. https://tonsky.me/blog/disenchantment/ Eruptr is an extensible, model and configuration driven data management system targeting ETL, DataOps and Analytics Engineering. The initial target for Eruptr is the ClickHouse OLAP engine however it is being adapted and extended to address other modern data eco-systems. ## Why The main data processing mechanism is over untyped data using existing decades old Unix/Linux tools. One of the key goals of Eruptr in this regard is to force us to ask honest questions about existing data processing mechanisms. Do we need a heavy, Java-based system to process our data or does awk solve the problem for 95% of our data in 10% of the time? What about heavily typed data processing systems in Python that pass dictionaries or tuples around with mountains of code on Kubernetes? Is that necessary? Or could it be dealt with via grep on a micro instance? ## Initial Release The initial release is an alpha release. Tests have not been established and there are quirks/issues in some components or functionality that differs to the documentation. These issues will be rectified prior to Christmas 2020 with a proper production release in January 2021. ## Roadmap - Generator modules with daemon mode - Scheduler/task controller with multi-processing schedulers - Engine support for PostgreSQL, MySQL, RedShift and Google BigQuery - Additional task, pipe and io modules - Analytics / Data Engineering projects - Database reflection with automatic model/schema migrations - A web UI for managing workflows - Analytics engineering workflows including documentation - Graph scheduling with multiple flows - Marrying eco-systems - Vulkn and the upcoming Vulkn Server ## Documentation Documentation is available at http://docs.vulkndata.io/eruptr/. ## Installation Eruptr has only been tested with recent versions of Ubuntu and Python 3.7. You will need to have a working Python 3.7.x environment with pip. Ensure you have installed ClickHouse the clickhouse-client program including clickhouse-local: ```bash sudo apt install clickhouse-client clickhouse-common ``` ### Installation with pip 1. Install Eruptr via pip. ```bash sudo add-apt-repository ppa:deadsnakes/ppa sudo apt update sudo apt install -y python3.7 python3.7-dev python3-pip sudo python3.7 -m pip install eruptr ``` ### Installation from source (for developers) 1. Install Eruptr via ```git clone```. ```bash git clone https://github.com/VulknData/eruptr.git cd eruptr ``` 2. Install required packages. Note that it may make sense to do this within a virtual environment. ```bash pip install -r requirements.txt ``` 3. You can start using Eruptr via the eruptr script: ```bash cd scripts source env.sh ./eruptr --help ``` ## Getting Started Let's use one of the provided examples. This assumes you have a ClickHouse server running on your local system listening on standard ports with no default credentials (default/empty password). Create the following file - simple1.yaml: ```yaml name: Simple1 Batch Job shard: clickhouse://localhost/test workflow: - drop: executor: StepExecutor - create: executor: StepExecutor enabled: true - data: executor: StepExecutor - pre: executor: StepExecutor enabled: true - input: executor: UnixPipeExecutor enabled: true - post: executor: StepExecutor - clean: executor: StepExecutor data: - tasks.file.write: path: system_metrics.csv data: | "device1","1970-04-27 03:46:40",32.3,"temperature" "device1","1970-04-27 03:46:40",10.2,"watts" - tasks.pack.gz: input_file: system_metrics.csv output_file: system_metrics.csv.gz pre: - TRUNCATE TABLE simple1.system_metrics input: - io.file.read: system_metrics.csv.gz - pipes.unpack.gz - io.clickhouse.write: table: simple1.system_metrics format: formats.clickhouse.CSV post: - tasks.file.delete: system_metrics.csv.gz create: - CREATE DATABASE IF NOT EXISTS simple1 - | CREATE TABLE IF NOT EXISTS simple1.system_metrics ( device String, epoch_dt DateTime, value Float32, tag String ) ENGINE = Log clean: - DROP TABLE IF EXISTS simple1.system_metrics - DROP DATABASE IF EXISTS simple1 ``` First lets generate some test data: ```bash eruptr load --conf simple1.yaml --log-level INFO --flows data VulknData Eruptr (C) 2020 VulknData, Jason Godden GPLv3 - see https://github.com/VulknData/eruptr/COPYING 12/01/2020 09:14:40 PM - INFO - Rendering configuration 12/01/2020 09:14:40 PM - INFO - Running "Simple1 Batch Job" 12/01/2020 09:14:40 PM - INFO - Executing data section 12/01/2020 09:14:40 PM - INFO - StepExecutor: tasks.file.write({'path': 'system_metrics.csv', 'data': '"device1","1970-04-27 03:46:40",32.3,"temperature"\n"device1","1970-04-27 03:46:40",10.2,"watts"\n'}) -> tasks.pack.gz({'input_file': 'system_metrics.csv', 'output_file': 'system_metrics.csv.gz'}) 12/01/2020 09:14:40 PM - INFO - Successfully completed "Simple1 Batch Job" OK - Simple1 Batch Job - SUCCESS ``` Using the --flows option we've told eruptr to execute the `data` flow only. Great. This has provided us with a simple dataset we can import. If we don't specify any flows eruptr automatically runs only the enabled workflows in the order they're defined (create, pre and input). ```bash eruptr load --conf simple1.yaml --log-level INFO VulknData Eruptr (C) 2020 VulknData, Jason Godden GPLv3 - see https://github.com/VulknData/eruptr/COPYING 12/01/2020 09:24:04 PM - INFO - Rendering configuration 12/01/2020 09:24:04 PM - INFO - Running "Simple1 Batch Job" 12/01/2020 09:24:04 PM - INFO - Executing create section 12/01/2020 09:24:04 PM - INFO - StepExecutor: tasks.clickhouse.execute(CREATE DATABASE IF NOT EXISTS simple1) -> tasks.clickhouse.execute(CREATE TABLE IF NOT EXISTS simple1.system_metrics ( device String, epoch_dt DateTime, value Float32, tag String ) ENGINE = Log ) 12/01/2020 09:24:04 PM - INFO - Executing pre section 12/01/2020 09:24:04 PM - INFO - StepExecutor: tasks.clickhouse.execute(TRUNCATE TABLE simple1.system_metrics) 12/01/2020 09:24:04 PM - INFO - Executing input section 12/01/2020 09:24:04 PM - INFO - UnixPipeExecutor: <function read at 0x7f9e0d61ed90>(run='system_metrics.csv.gz', connection='clickhouse://localhost/test' | <function <lambda> at 0x7f9e0d62bd08>(run='None', connection='clickhouse://localhost/test' | <function write at 0x7f9e0d61ed08>(connection='clickhouse://localhost/test', table='simple1.system_metrics', format='formats.clickhouse.CSV' 12/01/2020 09:24:04 PM - INFO - Successfully completed "Simple1 Batch Job" OK - Simple1 Batch Job - SUCCESS ``` And what can we see in ClickHouse? ```bash hulk :) select * from simple1.system_metrics format CSV; SELECT * FROM simple1.system_metrics FORMAT CSV Query id: f4c471b1-f32a-4636-8e62-d923e5dc10c4 "device1","1970-04-27 03:46:40",32.3,"temperature" "device1","1970-04-27 03:46:40",10.2,"watts" 2 rows in set. Elapsed: 0.005 sec. ``` Perfect. So eruptr has created the necessary database, then table(s) and then extracted and loaded our data. This is a trivial example though. Explore the documentation further to see how you can create complex workflows with everything from custom shell commands to embedded Python all driven by simple YAML. Or combine Mako and Jinja to create re-usable macros for processing your data.


نیازمندی

مقدار نام
>=3.0.4 chardet
>=2.10 idna
>=2.11.2 Jinja2
>=1.1.3 Mako
>=1.1.1 MarkupSafe
>=5.3.1 PyYAML
>=2.25.0 requests
>=0.8.7 tabulate
>=1.26.2 urllib3


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl eruptr-20.12.3:

    pip install eruptr-20.12.3.whl


نصب پکیج tar.gz eruptr-20.12.3:

    pip install eruptr-20.12.3.tar.gz