معرفی شرکت ها


era5-dl-0.1a1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

a simple helper for downloading ECMWF's ERA5 reanalysis data
ویژگی مقدار
سیستم عامل -
نام فایل era5-dl-0.1a1
نام era5-dl
نسخه کتابخانه 0.1a1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Guangzhi XU
ایمیل نویسنده xugzhi1987@gmail.com
آدرس صفحه اصلی https://github.com/Xunius/era5-dl
آدرس اینترنتی https://pypi.org/project/era5-dl/
مجوز -
# ERA5-dl: a simple helper for downloading ECMWF's ERA5 reanalysis data ## Dependencies and requirements: * `cdsapi`: Python package. Can be installed via `pip install cdsapi`. * ECMWF account and a `.cdsapirc` token file in the *HOME* directory. See https://confluence.ecmwf.int/display/CKB/How+to+download+ERA5 for more details. ## Install Install via `pip`: ``` pip install era5-dl ``` ## Features and usages ### 1. Batch download Send batch download jobs to retrieve large amount of data while saving the downloaded data into separate files, e.g. each for year. E.g. to download u-wind and geo-potential during 2000-2001, on pressure levels 1000 and 800 hPa, while skipping some combinations of variables, years and levels: ``` from era5dl import batchDownload, TEMPLATE_DICT OUTPUTDIR='.' JOB_DICT = { 'variable': ['u_component_of_wind', 'geopotential'], 'year': range(2000, 2002), 'pressure_level': [1000, 800] } SKIP_LIST = [ {'variable': 'u_component_of_wind', 'year': [2000, ], 'pressure_level': [1000, 800]}, {'variable': 'geopotential', 'year': [2001, ], 'pressure_level': [800, ]}, ] batchDownload(TEMPLATE_DICT, JOB_DICT, SKIP_LIST, OUTPUTDIR, dry=True, pause=3) ``` ### 2. Keep a log A log file is created in the same folder where the downloaded data are saved. Example log: ``` <util_downloader.py-processJob()>: 2021-04-17 20:20:38,289,INFO: <batch_download>: Output folder at: ./ <util_downloader.py-processJob()>: 2021-04-17 20:20:38,290,INFO: Launch job 1 <util_downloader.py-processJob()>: 2021-04-17 20:20:38,290,INFO: Job info: {'product_type': 'reanalysis', 'format': 'netcdf', 'variable': 'u_component_of_wind', 'pressure_level': 800, 'year': 2001, 'month': ['01', '02', '03', '04', '05', '06', '07', '08', '09', '10', '11', '12'], 'day': ['01', '02', '03', '04', '05', '06', '07', '08', '09', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31'], 'time': ['00:00', '06:00', '12:00', '18:00'], 'area': [10, 80, -10, 100]} <util_downloader.py-processJob()>: 2021-04-17 20:20:38,290,INFO: Output file location: ./[ID0]800-u_component_of_wind-2001.nc <util_downloader.py-processJob()>: 2021-04-17 20:20:41,293,INFO: <batch_download>: Output folder at: ./ <util_downloader.py-processJob()>: 2021-04-17 20:20:41,294,INFO: Launch job 2 <util_downloader.py-processJob()>: 2021-04-17 20:20:41,294,INFO: Job info: {'product_type': 'reanalysis', 'format': 'netcdf', 'variable': 'u_component_of_wind', 'pressure_level': 1000, 'year': 2001, 'month': ['01', '02', '03', '04', '05', '06', '07', '08', '09', '10', '11', '12'], 'day': ['01', '02', '03', '04', '05', '06', '07', '08', '09', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31'], 'time': ['00:00', '06:00', '12:00', '18:00'], 'area': [10, 80, -10, 100]} <util_downloader.py-processJob()>: 2021-04-17 20:20:41,294,INFO: Output file location: ./[ID1]1000-u_component_of_wind-2001.nc <util_downloader.py-processJob()>: 2021-04-17 20:20:44,296,INFO: <batch_download>: Output folder at: ./ <util_downloader.py-processJob()>: 2021-04-17 20:20:44,296,INFO: Launch job 3 ... ``` ### 3. Skip already downloaded files When running a batch downloading job, each finished job is recorded in a text file named `downloaded_list.txt` in the same folder as the saved data. If the downloading is interrupted, for instance by network issues, a second run of the script will first look at the `downloaded_list.txt` file and exclude those already finished retrievals. ### 4. Create a batch download job by splitting the api request from ECMWF web E.g. One selects the desired data from the CDS web interface as shown in the following 3 screen captures: ![](docs/web_api_1.png) ![](docs/web_api_2.png) ![](docs/web_api_3.png) Notice that it is warned that the requested field is too large. Even if not, one may want to split the entire data into smaller, more manageable chunks, for instance, by saving each variable in each year, on each vertical level into a separate file. To split the retrieval, first click the **Show API request** button at the bottom of the page, and copy and save the Python code into a text file, e.g. `api.txt`, then run a Python script with the following content: ``` from era5dl import batchDownloadFromWebRequest OUTPUTDIR='./' DRY=False batchDownloadFromWebRequest('./api.txt', OUTPUTDIR, ['variable', 'pressure_level', 'year'], DRY, pause=3) ``` The `['variable', 'pressure_level', 'year']` list tells that the batch job is split by these 3 dimensions/fields, such that each sub-job consists of each variable in each year, on each vertical level, and the data of the sub-job is saved into a separate file. Again, already downloaded data are recorded in the `downloaded_list.txt` file and re-executing the script will not re-download them. ### 5. Automatically generate meaningful file names The `batchDownload()` and `batchDownloadFromWebRequest()` functions accept a `naming_func` keyword argument, which can be `None`, or a callable. If a callable, it should be a function that accepts a single input argument which is a dict defining the data retrieval task, and returns a string as the filename (without folder path) to name the downloaded data. If `None`, it will construct a default filename, using the following format: `[ID<n>]<attributes>.nc` or `[ID<n>]<attributes>.grb`. where `<n>` is the numerical id of the job, `<attributes>` is a dash concatenated string joining the attributes that define the job. E.g. ``` [ID02]700-geopotential-2000.nc ``` ### 6. Dry run The `batchDownload()` and `batchDownloadFromWebRequest()` functions accept a `dry` positional argument. When set to `True`, will simulate the retrieval rather than actually sending the `cdsapi` retrieval request. This can be used to test the request definition. ## Contribution This tool is still in early development stage. Contributions and bug reports are welcome. Please create a fork of the project on GitHub and use a pull request to propose your changes.


نیازمندی

مقدار نام
- cdsapi


زبان مورد نیاز

مقدار نام
>=3 Python


نحوه نصب


نصب پکیج whl era5-dl-0.1a1:

    pip install era5-dl-0.1a1.whl


نصب پکیج tar.gz era5-dl-0.1a1:

    pip install era5-dl-0.1a1.tar.gz