معرفی شرکت ها


eqsig-1.2.5


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Signal processing for field and experimental data for earthquake engineering
ویژگی مقدار
سیستم عامل -
نام فایل eqsig-1.2.5
نام eqsig
نسخه کتابخانه 1.2.5
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Maxim Millen
ایمیل نویسنده mmi46@uclive.ac.nz
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/eqsig/
مجوز MIT
.. image:: https://travis-ci.org/eng-tools/eqsig.svg?branch=master :target: https://travis-ci.org/eng-tools/eqsig :alt: Testing Status .. image:: https://img.shields.io/pypi/v/eqsig.svg :target: https://pypi.python.org/pypi/eqsig :alt: PyPi version .. image:: https://coveralls.io/repos/github/eng-tools/eqsig/badge.svg :target: https://coveralls.io/github/eng-tools/eqsig .. image:: https://img.shields.io/badge/license-MIT-blue.svg :target: https://github.com/eng-tools/eqsig/blob/master/LICENSE :alt: License .. image:: https://eng-tools.github.io/static/img/ecp-badge.svg :target: https://eng-tools.github.io :alt: ECP project .. image:: https://zenodo.org/badge/125842866.svg :target: https://zenodo.org/badge/latestdoi/125842866 :alt: DOI .. image:: https://pepy.tech/badge/eqsig :target: https://pepy.tech/project/eqsig ***** eqsig ***** A Python package for seismic signal processing. Features ======== This package provides common functions for computing ground motion parameters and performing signal processing. The functions are implemented on either numpy arrays or on a signal object that uses caching to avoid expensive recalculation of widely used parameters. * Compute the acceleration response spectrum and elastic response time series using the fast Nigam and Jennings (1968) algorithm. * Compute the Fourier amplitude spectrum (using the scipy.signal.fft algorithm) * Compute the smooth Fourier amplitude spectrum according to Konno and Ohmachi (1998) * Compute velocity and displacement from acceleration time series * Compute peak ground motion quantities (PGA, PGV, PGD) * Compute common ground motion intensity measures (Arias intensity, CAV, CAV_dp5, significant duration, bracketed duration, dominant period) * Compute signal features (zero crossings, global peaks, local peaks) * Compute rotated ground motion or intensity measure from two ground motion components * Resampling of ground motion through interpolation or periodic resampling * Butterworth filter (using scipy), running average, polynomial fitting * Fast loading of, and saving of, plain text to and from Signal objects How to Use ========== [Eqsig documentation](https://eqsig.readthedocs.io) Examples -------- Generate response spectra _________________________ .. code-block:: python import numpy as np import matplotlib.pyplot as plt import eqsig.single bf, sub_fig = plt.subplots() a = np.loadtxt("<path-to-acceleration-time-series>") dt = 0.005 # time step of acceleration time series periods = np.linspace(0.2, 5, 100) # compute the response for 100 periods between T=0.2s and 5.0s record = eqsig.AccSignal(a * 9.8, dt) record.generate_response_spectrum(response_times=periods) times = record.response_times sub_fig.plot(times, record.s_a, label="eqsig") plt.show() Generate Stockwell transform ____________________________ .. code-block:: python import numpy as np import matplotlib.pyplot as plt import eqsig from matplotlib import rc rc('font', family='Helvetica', size=9, weight='light') plt.rcParams['pdf.fonttype'] = 42 dt = 0.01 time = np.arange(0, 10, dt) f1 = 0.5 factor = 10. f2 = f1 * factor acc = np.cos(2 * np.pi * time * f1) + factor / 5 * np.cos(2 * np.pi * time * f2) asig = eqsig.AccSignal(acc, dt) asig.swtf = eqsig.stockwell.transform(asig.values) bf, ax = plt.subplots(nrows=2, sharex=True, figsize=(5.0, 4.0)) ax[0].plot(asig.time, asig.values, lw=0.7, c='b', label='Signal') in_pcm = eqsig.stockwell.plot_stock(ax[1], asig) ax[1].set_ylim([0.0, 10]) ax[0].set_xlim([0, 10]) ax[0].set_ylabel('Amplitude [$m/s^2$]', fontsize=8) ax[1].set_ylabel('$\it{Stockwell}$\nFrequency [Hz]', fontsize=8) ax[-1].set_xlabel('Time [s]', fontsize=8) from mpl_toolkits.axes_grid1.inset_locator import inset_axes cbaxes = inset_axes(ax[1], width="20%", height="3%", loc='upper right') cbaxes.set_facecolor([1, 1, 1]) cb = plt.colorbar(in_pcm, cax=cbaxes, orientation='horizontal') cb.outline.set_edgecolor('white') cbaxes.tick_params(axis='both', colors='white') ax[0].legend(loc='upper right') for sp in ax: sp.tick_params(axis='both', which='major', labelsize=8) plt.tight_layout() plt.show() .. image:: ./examples/stockwell-example.png :width: 400 :alt: Output from example Useful material =============== * Contributing ============ How do I get set up? -------------------- 1. Run ``pip install -r requirements.txt`` Package conventions ------------------- * A function that calculates a property that takes a Signal object as an input, should be named as `calc_<property>`, if the calculation has multiple different implementations, then include the citation as author and year as well `calc_<property>_<author>_<year>` * If the function takes a raw array then it should contain the word array (or values or vals). Testing ------- Tests are run with pytest * Locally run: ``pytest`` on the command line. * Tests are run on every push using travis, see the ``.travis.yml`` file Deployment ---------- To deploy the package to pypi.com you need to: 1. Push to the *pypi* branch. This executes the tests on circleci.com 2. Create a git tag and push to github, run: ``trigger_deploy.py`` or manually: .. code:: bash git tag 0.5.2 -m "version 0.5.2" git push --tags origin pypi Documentation ------------- Built via Sphinx following: https://codeandchaos.wordpress.com/2012/07/30/sphinx-autodoc-tutorial-for-dummies/ For development mode 1. cd to docs 2. Run ``make html`` Docstrings follow numpy convention (in progress): https://numpydoc.readthedocs.io/en/latest/format.html To fix long_description in setup.py: ``pip install collective.checkdocs``, ``python setup.py checkdocs`` Release instructions -------------------- On zenodo.org use the github integration tool, click on the eqsig package and click create new release. History ======= 1.2.10 (2020-11-24) ------------------- * Adjusted `eqsig.stockwell.plot_stock`, since min freq was out by factor of 0.5. 1.2.5 (2020-11-24) ------------------- * Added `gen_ricker_wavelet_asig` to create an acceleration signal that is a Ricker wavelet * Added `eqsig.sdof.calc_input_energy_spectrum` to compute the input energy into an SDOF * Can now load a Signal with a scale factor by passing in the keyword `m=<scale factor>` * The left interpolation function interp_left now returns the same size as x, which can be a scalar, and if `y` is None then assumes index (0,1,2,...,n) 1.2.4 (2020-07-20) ------------------- * Fixed issue with computation of surface energy spectra * Support for numpy==1.19 1.2.3 (2020-05-05) ------------------- * Fixed docs for generation of FAS, changed kwarg `n_plus` to `p2_plus` since this adds to the power of 2. 1.2.2 (2020-05-05) ------------------- * Switched to numpy for computing the Fourier amplitude spectrum 1.2.1 (2020-05-05) ------------------- * Added `response_period_range` to AccSignal object initial inputs to define response periods using an upper and lower limit * Improved speed of surface energy calculation `calc_surface_energy` and returns correct size based on input dimensions * Removed global import of scipy - done at function level * Added an `interp_left` function to interpolate an array and take lower value * Fixed issue with inverse of stockwell transform `stockwell.itransform`, it no longer doubles the time step * Increased speed of stockwell transform `stockwell.transform`. * Added `remove_poly` function to remove a polynomial fit from an array * Added option to access `fa_frequencies` and `smooth_fa_frequencies` as `fa_freqs` and `smooth_fa_freqs`. * Added option for computing smoothed FAS with extra zero padding * Added function for computing smoothed fas using a custom smoothing matrix. 1.2.0 (2019-11-03) ------------------- * Added `interp2d` fast interpolation of a 2D array to obtain a new 2D array * No longer raises warning when period is 0.0 for computing response spectrum * Fixed issue with computation of smoothed response spectrum for dealing with zeroth frequency * Increased speed of`generate_smooth_fa_spectrum` * Can now directly set `AccSignal.smooth_fa_frequencies` * Deprecated `AccSignal.smooth_freq_points` and `AccSignal.smooth_freq_range` will be removed in later version 1.1.2 (2019-10-31) ------------------- * More accuracy in `calc_surface_energy` - now interpolates between time steps. More tests added. 1.1.1 (2019-10-29) ------------------- * Fixed issue in `get_zero_crossings_array_indices` where it would fail if array did not contain any zeros. * Added calculation of equivalent number of cycles and equivalent uniform amplitude using power law relationship as intensity measures * Added function `get_n_cyc_array` to compute number of cycles series from a loading series * Added intensity measure `im.calc_unit_kinetic_energy()` to compute the cumulative change in kinetic energy according to Millen et al. (2019) * Added `surface.py` with calculation of surface energy and cumulative change in surface energy time series versus depth from surface 1.1.0 (2019-10-08) ------------------- * Fixed issue with second order term in sdof response spectrum calculation which effected high frequency response, updated example to show difference 1.0.0 (2019-07-01) ------------------- * First production release


زبان مورد نیاز

مقدار نام
>=3 Python


نحوه نصب


نصب پکیج whl eqsig-1.2.5:

    pip install eqsig-1.2.5.whl


نصب پکیج tar.gz eqsig-1.2.5:

    pip install eqsig-1.2.5.tar.gz