معرفی شرکت ها


epistasis-0.7.5


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A Python API for estimating statistical high-order epistasis in genotype-phenotype maps.
ویژگی مقدار
سیستم عامل -
نام فایل epistasis-0.7.5
نام epistasis
نسخه کتابخانه 0.7.5
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Zachary R. Sailer
ایمیل نویسنده zachsailer@gmail.com
آدرس صفحه اصلی https://github.com/harmslab/epistasis
آدرس اینترنتی https://pypi.org/project/epistasis/
مجوز UNLICENSE
# Epistasis [![Join the chat at https://gitter.im/harmslab/epistasis](https://badges.gitter.im/harmslab/epistasis.svg)](https://gitter.im/harmslab/epistasis?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge) [![Binder](http://mybinder.org/badge.svg)](https://beta.mybinder.org/v2/gh/harmslab/epistasis-notebooks/master) [![Documentation Status](https://readthedocs.org/projects/epistasis/badge/?version=latest)](http://epistasis.readthedocs.io/?badge=latest) [![Tests](https://github.com/harmslab/epistasis/workflows/Epistasis%20Tests/badge.svg)](https://github.com/harmslab/epistasis/actions?query=workflow%3A%22Epistasis+Tests%22) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.1215853.svg)](https://doi.org/10.5281/zenodo.1215853) *Python API for estimating statistical, high-order epistasis in genotype-phenotype maps.* All models follow a *Scikit-learn* interface and thus seamlessly plug in to the PyData ecosystem. For more information about the type of models included in this package, read our [docs](http://epistasis.readthedocs.io/?badge=latest). You can also read more about the theory behind these models in our [paper](https://doi.org/10.1534/genetics.116.195214). Finally, if you'd like to test out this package without any installing, try these Jupyter notebooks [here](https://mybinder.org/v2/gh/harmslab/epistasis-notebooks/master) (thank you [Binder](https://mybinder.org/)!). ## Examples The Epistasis package works best in combinations with GPMap, an API for managing genotype-phenotype map data. Construct a GenotypePhenotypeMap object and pass it directly to an epistasis model. ```python # Import a model and the plotting module from gpmap import GenotypePhenotypeMap from epistasis.models import EpistasisLinearRegression from epistasis.pyplot import plot_coefs # Genotype-phenotype map data. wildtype = "AAA" genotypes = ["ATT", "AAT", "ATA", "TAA", "ATT", "TAT", "TTA", "TTT"] phenotypes = [0.1, 0.2, 0.4, 0.3, 0.3, 0.6, 0.8, 1.0] # Create genotype-phenotype map object. gpm = GenotypePhenotypeMap(wildtype=wildtype, genotypes=genotypes, phenotypes=phenotypes) # Initialize an epistasis model. model = EpistasisLinearRegression(order=3) # Add the genotype phenotype map. model.add_gpm(gpm) # Fit model to given genotype-phenotype map. model.fit() # Plot coefficients (powered by matplotlib). plot_coefs(model, figsize=(3,5)) ``` <img src="docs/img/coef_example.png" width="200"> More examples can be found in these [binder notebooks](https://mybinder.org/v2/gh/harmslab/epistasis-notebooks/master). ## Installation Epistasis works in Python 3+ (we do not guarantee it will work in Python 2.) To install the most recent release on PyPi: ``` pip install epistasis ``` To install from source, clone this repo and run: ``` pip install -e . ``` ## Documentation Documentation and API reference can be viewed [here](http://epistasis.readthedocs.io/). ## Dependencies * [gpmap](https://github.com/harmslab/gpmap): Module for constructing powerful genotype-phenotype map python data-structures. * [Scikit-learn](http://scikit-learn.org/stable/): Simple to use machine-learning algorithms * [Numpy](http://www.numpy.org/): Python's array manipulation packaged * [Scipy](http://www.scipy.org/): Efficient scientific array manipulations and fitting. * [lmfit](https://lmfit.github.io/lmfit-py/): Non-linear least-squares minimization and curve fitting in Python. ### Optional dependencies * [matplotlib](): Python plotting API. * [ipython](): interactive python kernel. * [jupyter notebook](): interactive notebook application for running python kernels interactively. * [ipywidgets](): interactive widgets in python. ## Development We welcome pull requests! If you find a bug, we'd love to have you fix it. If there is a feature you'd like to add, feel free to submit a pull request with a description of the addition. We also ask that you write the appropriate unit-tests for the new feature and add documentation to our Sphinx docs. To run the tests on this package, make sure you have `pytest` installed and run from the base directory: ``` pytest ``` ## Citing If you use this API for research, please cite this [paper](https://doi.org/10.1534/genetics.116.195214). You can also cite the software directly: ``` @misc{zachary_sailer_2017_252927, author = {Zachary Sailer and Mike Harms}, title = {harmslab/epistasis: Genetics paper release}, month = jan, year = 2017, doi = {10.5281/zenodo.1215853}, url = {https://doi.org/10.5281/zenodo.1215853} } ```


نیازمندی

مقدار نام
- cython
>=1.15.2 numpy
>=0.24.2 pandas
>=0.20.0 scikit-learn
>=1.1.0 scipy
>=2.2.1 emcee
>=0.9.11 lmfit
>=3.0.0 matplotlib
>=0.6.0 gpmap
- pytest


زبان مورد نیاز

مقدار نام
>=3.3.0 Python


نحوه نصب


نصب پکیج whl epistasis-0.7.5:

    pip install epistasis-0.7.5.whl


نصب پکیج tar.gz epistasis-0.7.5:

    pip install epistasis-0.7.5.tar.gz