معرفی شرکت ها


eos-py-1.4.0.post0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Python bindings for eos - A lightweight 3D Morphable Face Model fitting library in modern C++11/14
ویژگی مقدار
سیستم عامل -
نام فایل eos-py-1.4.0.post0
نام eos-py
نسخه کتابخانه 1.4.0.post0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Patrik Huber
ایمیل نویسنده patrikhuber@gmail.com
آدرس صفحه اصلی https://github.com/patrikhuber/eos
آدرس اینترنتی https://pypi.org/project/eos-py/
مجوز Apache-2.0
# eos: A lightweight header-only 3D Morphable Face Model fitting library in modern C++11/14. [![Latest release](http://img.shields.io/github/release/patrikhuber/eos.svg?style=flat-square)][release] [![Linux build status of master branch](https://img.shields.io/travis/patrikhuber/eos/master.svg?style=flat-square&label=Linux/macOS%3A%20build)][travis] [![Windows build status of master branch](https://ci.appveyor.com/api/projects/status/gekekpn08cdgqcsk/branch/master?svg=true&passingText=Windows%3A%20build%20passing&failingText=Windows%3A%20build%20failing&pendingText=Windows%3A%20build%20pending)][appveyor] [![Apache License 2.0](https://img.shields.io/badge/license-Apache%20License%202.0-blue.svg?style=flat-square)][license] [![Sponsor eos on GitHub Sponsors](https://img.shields.io/static/v1?style=flat-square&label=Sponsor&message=%E2%9D%A4&logo=GitHub)][sponsor] [release]: https://github.com/patrikhuber/eos/releases [travis]: https://travis-ci.org/patrikhuber/eos [appveyor]: https://ci.appveyor.com/project/patrikhuber/eos/branch/master [license]: https://github.com/patrikhuber/eos/blob/master/LICENSE [sponsor]: https://github.com/sponsors/patrikhuber eos is a lightweight 3D Morphable Face Model fitting library that provides basic functionality to use face models, as well as camera and shape fitting functionality. It's written in modern C++11/14. At the moment, it mainly provides the following functionality: * MorphableModel and PcaModel classes to represent 3DMMs, with basic operations like `draw_sample()`. Supports the Surrey Face Model (SFM), 4D Face Model (4DFM), Basel Face Model (BFM) 2009 and 2017, and the Liverpool-York Head Model (LYHM) out-of-the-box * The low-resolution, shape-only Surrey Face Model ([share/sfm_shape_3448.bin](https://github.com/patrikhuber/eos/blob/master/share/sfm_shape_3448.bin)) * Fast, linear pose, shape and expression fitting, edge and contour fitting: * Linear scaled orthographic projection camera pose estimation * Linear shape-to-landmarks fitting, implementation of O. Aldrian & W. Smith, _Inverse Rendering of Faces with a 3D Morphable Model_, PAMI 2013 * Expression fitting, with 6 linear expression blendshapes of the SFM: anger, disgust, fear, happiness, sadness, surprise * Edge-fitting, heavily inspired by: A. Bas et al., _Fitting a 3D Morphable Model to Edges: A Comparison Between Hard and Soft Correspondences_, ACCVW 2016 * Texture extraction to obtain a pose-invariant representation of the face texture * **Python bindings**: Much of eos's functionality is available as a python module (try `pip install eos-py`!) * (_Experimental_): Non-linear fitting cost functions using Ceres for shape, camera, blendshapes and the colour model (needs Ceres to be installed separately) An experimental model viewer to visualise 3D Morphable Models and blendshapes is available [here](https://github.com/patrikhuber/eos-model-viewer). ## Usage * Tested with the following compilers: >=gcc-6, >=clang-5, >=Visual Studio 2017 15.5, >=Xcode 9.2. * The library and python bindings **do not require any external dependencies**. The example applications require Boost (>=1.71.0) and OpenCV (>=2.4.3). To use the library in your own project, just add the following directories to your include path: * `eos/include` * `eos/3rdparty/cereal/include` * `eos/3rdparty/nanoflann/include` * `eos/3rdparty/eigen/Eigen` * `eos/3rdparty/eigen3-nnls/src` * `eos/3rdparty/toml11` **Make sure to clone with `--recursive` to download the required submodules!** ### Build the examples and tests * Needed dependencies for the example app: CMake (>=3.8.2, or >=3.10.0 for MSVC), Boost system, filesystem, program_options (>=1.71.0), OpenCV core, imgproc, highgui (>=2.4.3). To build: ``` git clone --recursive https://github.com/patrikhuber/eos.git mkdir build && cd build # creates a build directory next to the 'eos' folder cmake -G "<your favourite generator>" ../eos -DCMAKE_INSTALL_PREFIX=../install/ make && make install # or open the project file and build in an IDE like Visual Studio ``` It is strongly recommended to use [vcpkg](https://github.com/Microsoft/vcpkg/) to install the dependencies on Windows. Users who wish to manage dependencies manually may find it helpful to copy `initial_cache.cmake.template` to `initial_cache.cmake`, edit the necessary paths and run `cmake` with `-C ../eos/initial_cache.cmake`. On Linux, you may also want to set `-DCMAKE_BUILD_TYPE=...` appropriately. ## Sample code The fit-model example app creates a 3D face from a 2D image. After `make install` or running the `INSTALL` target, an example image with landmarks can be found in `install/bin/data/`. The model and the necessary landmarks mapping file are installed to `install/share/`. You can run the example just by running: `fit-model` It will load the face model, landmark-to-vertex mappings, blendshapes, and other required files from the `../share/` directory, and run on the example image. It can be run on other images by giving it a `-i` parameter for the image and `-l` for a set of ibug landmarks. The full set of parameters can be viewed by running `fit-model --help`. If you are just getting started, it is recommended to have a look at `fit-model-simple` too, as it requires much fewer input, and only fits pose and shape, without any blendshapes or edge-fitting. Its full set of arguments is: `fit-model-simple -m ../share/sfm_shape_3448.bin -p ../share/ibug_to_sfm.txt -i data/image_0010.png -l data/image_0010.pts` The output in both cases is an `obj` file with the shape and a `png` with the extracted texture map. The estimated pose angles and shape coefficients are available in the code via the API. See [examples/fit-model.cpp](https://github.com/patrikhuber/eos/blob/master/examples/fit-model.cpp) for the full code. ## The Surrey Face Model The library includes a low-resolution shape-only version of the Surrey Morphable Face Model. It is a PCA model of shape variation built from 3D face scans. It comes with uv-coordinates to perform texture remapping. <img src="https://raw.githubusercontent.com/patrikhuber/eos/gh-pages/images/sfm_shape_3448_mesh.png" width=20% alt="Surrey Face Model shape picture"></img> The full model is available at [http://www.cvssp.org/facemodel](http://www.cvssp.org/facemodel). ## 4D Face Model (4DFM) eos can be used to load, use and do basic fitting with the 4D Face Model (4DFM) from [4dface Ltd](https://www.4dface.io). The model features 39 expressions/action units, and diverse identity variation. <img src="https://raw.githubusercontent.com/patrikhuber/eos/gh-pages/images/4dfm_color_sample.jpg" width=20% alt="4D Face Model colour picture"></img> <img src="https://raw.githubusercontent.com/patrikhuber/eos/gh-pages/images/4dfm_shape.png" width=20% alt="4D Face Model shape picture"></img> More information about the model can be found on [www.4dface.io/4dfm](https://www.4dface.io/4dfm/). ## Python bindings eos includes python bindings for some of its functionality (and more can be added!). It can be installed from [PyPI](https://pypi.org/project/eos-py/) with `pip install eos-py`. You will still need the data files from this repository. Make sure that you've got >=gcc-7 or >=clang-5 as the default compiler on Linux (for example from the [ubuntu-toolchain-r/test](https://launchpad.net/~ubuntu-toolchain-r/+archive/ubuntu/test) repository) or do ``CC=`which gcc-7` CXX=`which g++-7` pip install eos-py``. Also make sure you've got >=cmake-3.8.2 (or >=cmake-3.10.0 for MSVC) in your path. In case of issues, the bindings can also be built manually: Clone the repository and set `-DEOS_GENERATE_PYTHON_BINDINGS=on` when running `cmake` (and optionally set `PYTHON_EXECUTABLE` to point to your python interpreter if it's not found automatically). After having obtained the bindings, they can be used like any python module: ``` import eos import numpy as np model = eos.morphablemodel.load_model("eos/share/sfm_shape_3448.bin") sample = model.get_shape_model().draw_sample([1.0, -0.5, 0.7]) help(eos) # check the documentation ``` See [`demo.py`](https://github.com/patrikhuber/eos/blob/master/python/demo.py) for an example on how to run the fitting. ## Matlab bindings _Experimental (not maintained currently)_: eos includes Matlab bindings for the `fit_shape_and_pose(...)` function, which means the fitting can be run from Matlab. Set `-DEOS_GENERATE_MATLAB_BINDINGS=on` when running `cmake` to build the required mex-file and run the `INSTALL` target to install everything. (Set `Matlab_ROOT_DIR` to point to your Matlab directory if it's not found automatically). More bindings (e.g. the MorphableModel itself) might be added in the future. Go to the `install/eos/matlab` directory and run [`demo.m`](https://github.com/patrikhuber/eos/blob/master/matlab/demo.m) to see how to run the fitting. The result is a mesh and rendering parameters (pose). ## Documentation Doxygen: http://patrikhuber.github.io/eos/doc/ The [fit-model example](https://github.com/patrikhuber/eos/blob/master/examples/fit-model.cpp) and the [Namespace List](http://patrikhuber.github.io/eos/doc/namespaces.html) in doxygen are a good place to start. ## License & contributions This code is licensed under the Apache License, Version 2.0. The 3D morphable face model under [share/sfm_shape_3448.bin](https://github.com/patrikhuber/eos/blob/master/share/sfm_shape_3448.bin) is free for use for non-commercial purposes. For commercial purposes and to obtain other model resolutions, see [http://www.cvssp.org/facemodel](http://www.cvssp.org/facemodel). Contributions are very welcome! (best in the form of pull requests.) Please use GitHub issues for any bug reports, ideas, and discussions. If you use this code in your own work, please cite the following paper: _A Multiresolution 3D Morphable Face Model and Fitting Framework_, P. Huber, G. Hu, R. Tena, P. Mortazavian, W. Koppen, W. Christmas, M. Rätsch, J. Kittler, International Conference on Computer Vision Theory and Applications (VISAPP) 2016, Rome, Italy [[PDF]](http://www.patrikhuber.ch/files/3DMM_Framework_VISAPP_2016.pdf).


نحوه نصب


نصب پکیج whl eos-py-1.4.0.post0:

    pip install eos-py-1.4.0.post0.whl


نصب پکیج tar.gz eos-py-1.4.0.post0:

    pip install eos-py-1.4.0.post0.tar.gz