معرفی شرکت ها


eodal-0.2.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

The Earth Observation Data Analysis Library EOdal
ویژگی مقدار
سیستم عامل -
نام فایل eodal-0.2.0
نام eodal
نسخه کتابخانه 0.2.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Group of Crop Science, ETH Zurich & EOA-Team Agroscope Reckenholz, Zurich, Switzerland
ایمیل نویسنده -
آدرس صفحه اصلی https://github.com/EOA-team/eodal
آدرس اینترنتی https://pypi.org/project/eodal/
مجوز GNU General Public License v3
# E:earth_africa:dal Earth Observation Data Analysis Library **A truely open-source package for unified analysis of Earth Observation (EO) data** :heavy_check_mark: Cloud-native by design thanks to [STAC](https://stacspec.org/en) :heavy_check_mark: Access to Petabytes of global EO data including satellite imagery with native `Mapper` module :heavy_check_mark: EO data querying, I/O, processing, analysis and visualization in a single package :heavy_check_mark: Modulare and lightweight architecture :heavy_check_mark: Almost unlimited expandability with interfaces to [xarray](https://docs.xarray.dev/en/stable/), [numpy](https://numpy.org/), [geopandas](https://geopandas.org/en/stable/), and many more ## About E:earth_africa:dal is a Python library enabling the acquisition, organization, and analysis of EO data in a completely open-source manner within a unified framework. E:earth_africa:dal enables open-source, reproducible geo-spatial data science. At the same time, E:earth_africa:dal lowers the burden of data handling and provides access to **global satellite data archives** through **downloaders** and the fantastic **SpatioTemporalAssetsCatalogs** (STAC). E:earth_africa:dal supports working in **cloud-environments** using [STAC catalogs](https://stacspec.org/) ("online" mode) and on **local premises** using a spatial PostgreSQL/PostGIS database to organize metadata ("offline" mode). Read more about E:earth_africa:dal in [our peer reviewed article](https://doi.org/10.1016/j.compag.2022.107487). ## Citing E:earth_africa:dal We put a lot of effort in developing E:earth_africa:dal. To give us proper credit please respect our [license agreement](LICENSE). When you use E:earth_africa:dal for your **research** please [**cite our paper**](https://doi.org/10.1016/j.compag.2022.107487) in addition to give us proper scientific credit. ```latex @article{GRAF2022107487, title = {EOdal: An open-source Python package for large-scale agroecological research using Earth Observation and gridded environmental data}, journal = {Computers and Electronics in Agriculture}, volume = {203}, pages = {107487}, year = {2022}, issn = {0168-1699}, doi = {https://doi.org/10.1016/j.compag.2022.107487}, url = {https://www.sciencedirect.com/science/article/pii/S0168169922007955}, author = {Lukas Valentin Graf and Gregor Perich and Helge Aasen}, keywords = {Satellite data, Python, Open-source, Earth Observation, Ecophysiology} } ``` ## Data Model ![EOdal data model](https://raw.githubusercontent.com/EOA-team/eodal/master/img/EOdal_Data-Model.jpg) E:earth_africa:dal has a sophisticated data model projecting the complexity of Earth Observation data into Python classes. The object-based design of E:earth_africa:dal has four base classes: * [E:earth_africa:dal Band](https://github.com/EOA-team/eodal/tree/master/eodal/core/band.py) is the class for handling single bands. A band is a two-dimensional raster layer (i.e., an two-dimensional array). Each raster cell takes a value. These values could represent color intensity, elevation above mean sea level, or temperature readings, to name just a few examples. A band has a name and an optional alias. Its raster grid cells are geo-referenced meaning each cell can be localized in a spatial reference system. * [E:earth_africa:dal RasterCollection](https://github.com/EOA-team/eodal/tree/master/eodal/core/raster.py) is a class that contains 0 to *n* Band objects. The bands are identified by their names or alias (if available). * [E:earth_africa:dal Scene](https://github.com/EOA-team/eodal/tree/master/eodal/core/raster.py) is essential a RasterCollection with `SceneMetadata` assigning the RasterCollection a time-stamp and an optional scene identifier. * [E:earth_africa:dal SceneCollection](https://github.com/EOA-team/eodal/tree/master/eodal/core/raster.py) is a collection of 0 to *n* Scenes. The scenes are identified by their timestamp or scene identifier (if available). ## Mapper The E:earth_africa:dal [Mapper](https://github.com/EOA-team/eodal/tree/master/eodal/mapper/mapper.py) is one of the key components of E:earth_africa:dal. If you are familiar with [GEE](https://earthengine.google.com/) you can expect a similar easy access to vast amounts of EO data - except that is truely open-source. If you are absolutely new to EO you will quickly learn how to query, read and process large data volumes. In the example below Sentinel-2 data is loaded for an area-of-interest in central Switzerland from [Microsoft Planetary Computer](https://planetarycomputer.microsoft.com/) (no authentication required). ```python import geopandas as gpd from datetime import datetime from eodal.core.sensors.sentinel2 import Sentinel2 from eodal.mapper.feature import Feature from eodal.mapper.filter import Filter from eodal.mapper.mapper import Mapper, MapperConfigs from typing import List #%% user-inputs # -------------------------- Collection ------------------------------- collection: str = 'sentinel2-msi' # ------------------------- Time Range --------------------------------- time_start: datetime = datetime(2022,3,1) # year, month, day (incl.) time_end: datetime = datetime(2022,6,30) # year, month, day (incl.) # ---------------------- Spatial Feature ------------------------------ geom: Path = Path('data/sample_polygons/lake_lucerne.gpkg') # ------------------------- Metadata Filters --------------------------- metadata_filters: List[Filter] = [ Filter('cloudy_pixel_percentage','<', 80), Filter('processing_level', '==', 'Level-2A') ] #%% query the scenes available (no I/O of scenes, this only fetches metadata) feature = Feature.from_geoseries(gpd.read_file(geom).geometry) mapper_configs = MapperConfigs( collection=collection, time_start=time_start, time_end=time_end, feature=feature, metadata_filters=metadata_filters ) # now, a new Mapper instance is created mapper = Mapper(mapper_configs) mapper.query_scenes() #%% load the scenes available from STAC (reading bands B02 "blue", B03 "green", B04 "red") scene_kwargs = { 'scene_constructor': Sentinel2.from_safe, 'scene_constructor_kwargs': {'band_selection': ['B02', 'B03', 'B04']} } mapper.load_scenes(scene_kwargs=scene_kwargs) # the data loaded into `mapper.data` as a EOdal SceneCollection mapper.data ``` ## Examples We have compiled a set of [Jupyter notebooks](https://github.com/EOA-team/eodal_notebooks) showing you the capabilities of E:earth_africa:dal and how to unlock them. ## Contributing Contributions to E:earth_africa:dal are welcome. Please make sure to read the [contribution guidelines](https://github.com/EOA-team/eodal/tree/master/Contributing.rst) first.


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl eodal-0.2.0:

    pip install eodal-0.2.0.whl


نصب پکیج tar.gz eodal-0.2.0:

    pip install eodal-0.2.0.tar.gz