معرفی شرکت ها


envkernel-1.1.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Jupyter kernels manipulation and in other environments (docker, Lmod, etc.)
ویژگی مقدار
سیستم عامل -
نام فایل envkernel-1.1.0
نام envkernel
نسخه کتابخانه 1.1.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Richard Darst
ایمیل نویسنده rkd@zgib.net
آدرس صفحه اصلی https://github.com/NordicHPC/envkernel
آدرس اینترنتی https://pypi.org/project/envkernel/
مجوز -
# Switch environments before running Jupyter kernels Sometimes, one needs to execute Jupyter kernels in a different environment. Say you want to execute the kernel in a conda environment (that's easy, but actually misses setting certain environment variables). Or run it inside a Docker container. One could manually adjust the kernelspec files to set environment variables or run commands before starting the kernel, but envkernel automates this process. envkernel is equally usable for end users (on their own systems or clusters) to easily access environments in Jupyter, or sysadmins deploying this access on systems they administer. In general, there are two passes: First, install the kernel, e.g.: `envkernel virtualenv --name=my-venv /path/to/venv`. This parses some options and writes a kernelspec file with the the `--name` you specify. When Jupyter tries to start this kernel, it will execute the next phase. When Jupyter tries to run the kernel, the kernelspec file will re-execute `envkernel` in the run mode, which does whatever is needed to set up the environment (in this case, sets `PATH` to the `/path/to/venv/bin/` that is needed). Then it starts the normal IPython kernel. Available modes: * `conda`: Activate a [conda environment](https://docs.conda.io/) first. * `virtualenv`: Activate a virtualenv first. * `docker`: Run the kernel in a Docker container. * `singularity`: Run the kernel in a [singularity container](https://www.sylabs.io/docs/). * `Lmod`: Activate [Lmod](https://lmod.readthedocs.io/) modules first. ## Installation Available on the PiPI: `pip install envkernel`. Or, you can install latest from Github in the usual way: `pip install https://github.com/NordicHPC/envkernel/archive/master.zip` This is a single-file script and can be copied directly and added to `PATH` as well. By design, there are no dependencies except the basic Jupyter client (not notebook or any UI), and that is only needed at kernel-setup time, not at kernel-runtime. The script must be available both when a kernel is set up, and each time the kernel is started (and currently assumes they are in the same location). ## General usage and common arguments General invocation: ```shell envkernel [mode] [envkernel options] [mode-specific-options] ``` General arguments usable by *all* classes during the setup phase: These options directly map to normal Jupyter kernel install options: * `mode`: `singularity`, `docker`, `lmod`, or whatever mode is desired. * `--name $name`: Name of kernel to install (**required**). * `--user`: Install kernel into user directory. * `--sys-prefix`: Install to the current Python's `sys.prefix` (the Python which is running envkernel). * `--prefix`: same as normal kernel install option. * `--display-name NAME`: Human-readable name. * `--replace`: Replace existing kernel (Jupyter option, unsure what this means). * `--language`: What language to tag this kernel (default `python`). These are envkernel-specific options: * `--verbose`, `-v`: Print more debugging information when installing the kernel. It is always in verbose mode when actually running the kernel. * `--python`: Python interpreter to use when invoking inside the environment. (Default `python`. Unlike other kernels, this defaults to a relative path because the point of envkernel is to set up PATH properly.) If this is the special value `SELF`, this will be replaced with the value of `sys.executable` of the Python running envkernel. * `--kernel=NAME`: Auto-set `--language` and `--kernel-cmd` to that needed for these well-known kernels. Options include `ipykernel` (the default), `ir`, or `imatlab`. But all of these hard-code a kernel command line and could possibly be wrong some day. * `--kernel-cmd`: a string which is the kernel to start - space separated, no shell quoting, it will be split when saving. The default is `python -m ipykernel_launcher -f {connection_file}`, which is suitable for IPython. For example, to start an R kernel in the environment use `R --slave -e IRkernel::main() --args {connection_file}` as the value to this, being careful with quoting the spaces only once. To find what the strings should be, copy form some existing kernels. `--kernel=NAME` includes shortcut for some popular kernels. * `--kernel-template`: An already-installed kernel name which is used as a template for the new envkernel. This is searched using the normal Jupyter search paths. This kernel json file is loaded and used as a template for all kernel options (`--language`, `--kernel-cmd`, etc). Also, any other file in this directory (such as logos) are copied to the new kernel (like kernel.js in irkernel). * `--kernel-make-path-relative` removes an absolute path from the kernel command (mainly useful with `--kernel-template`). This would be useful, for example, where you are setting up an lmod install and the absolute path of the module might change, but you want it to always run Python relative to that module anyway. * `--env=NAME=VALUE`. Set these environment variables when running the kernel. These are actually just saved in the `kernel.json` file under the `env` key, which is used by Jupyter itself. So, this is just a shorthand for adding variables there, it is not used at the envkernel stage at all. Order of precedence of options (later in the list overrides earlier): `--kernel-template`, `--kernel`, `--kernel-cmd`, `--language`, `--python`, `--display-name`. ## Conda The Conda envkernel will activate Conda environments (set the `PATH`, `CPATH`, `LD_LIBRARY_PATH`, and `LIBRARY_PATH` environment variables). This is done manually, if anyone knows a better way to do this, please inform us. ### Conda example This will load the `anaconda` environment before invoking an IPython kernel using the name `python`, which will presumably be the one inside the `anaconda3` environment. ```shell envkernel conda --name=conda-anaconda3 /path/to/anaconda3 ``` ### Conda mode arguments General invocation: ```shell envkernel conda --name=NAME [envkernel options] conda-env-full-path ``` * `conda-env-full-path`: Full path to the conda environment to load. ## Virtualenv This operates identically to `conda` mode, but with name `virtualenv` on virtualenvs. ### Virtualenv example ```shell envkernel virtualenv --name=conda-anaconda3 /path/to/anaconda3 ``` ## Docker Docker is a containerization system that runs as a system service. Note: docker has not been fully tested, but has been reported to work. ### Docker example ```shell envkernel docker --name=NAME --pwd --bind /m/jh/coursedata/:/coursedata /path/to/image.simg ``` ### Docker mode arguments General invocation: ```shell envkernel docker --name=NAME [envkernel options] [docker options] [image] ``` * `image`: Required positional argument: name of docker image to run. * `--pwd`: Bind-mount the current working directory and use it as the current working directory inside the notebook. This is usually useful. * A few more yet-undocumented and untested arguments... Any unknown argument is passed directly to the `docker run` call, and thus can be any normal Docker argument. If `,copy` is included in the `--mount` command options, the directory will be copied before mounting. This may be useful if the directory is on a network mount which the root docker can't access. It is recommended to always use the form of options with `=`, such as `--option=X`, rather than separating them with a space, to avoid problems with argument/option detection. ## Singularity [Singularity](https://www.sylabs.io/docs/) is a containerization system somewhat similar to Docker, but designed for user-mode usage without root, and with a mindset of using user software instead of system services. ### Singularity example ```shell envkernel singularity --name=NAME --contain --bind /m/jh/coursedata/:/coursedata /path/to/image.simg ``` ### Singularity mode arguments General invocation: ```shell envkernel singularity --name=NAME [envkernel options] [singularity options] [image] ``` * `image`: Required positional argument: name of singularity image to run. * `--pwd`: Bind-mount the current working directory and use it as the current working directory inside the notebook. This may happen by default if you don't `--contain`. Any unknown argument is passed directly to the `singularity exec` call, and thus can be any normal Singularity arguments. It is recommended to always use the form of options with `=`, such as `--bind=X`, rather than separating them with a space, to avoid problems with argument/option detection. The most useful Singularity options are (nothing envkernel specific here): * `--contain` or `-c`: Don't share any filesystems by default. * `--bind src:dest[:ro]`: Bind mount `src` from the host to `dest` in the container. `:ro` is optional, and defaults to `rw`. * `--cleanenv`: Clean all environment before executing. * `--net` or `-n`: Run in new network namespace. This does **NOT** work with Jupyter kernels, because localhost must currently be shared. So don't use this unless we create proper net gateway. ## Lmod The Lmod envkernel will load/unload [Lmod](https://lmod.readthedocs.io/) modules before running a normal IPython kernel. Using envkernel is better than the naive (but functional) method of modifying a kernel to invoke a particular Python binary, because that will invoke the right Python interpreter but not set relevant other environment variables (so, for example, subprocesses won't be in the right environment). ### Lmod example This will run `module purge` and then `module load anaconda3` before invoking an IPython kernel using the name `python`, which will presumably be the one inside the `anaconda3` environment. ```shell envkernel lmod --name=anaconda3 --purge anaconda3 ``` ### Lmod mode arguments General invocation: ```shell envkernel lmod --name=NAME [envkernel options] [module ...] ``` * `module ...`: Modules to load (positional argument). Note that if the module is prefixed with `-`, it is actually unloaded (this is a Lmod feature). * `--purge`: Purge all modules before loading the new modules. This can be safer, because sometimes users may automatically load modules from their `.bashrc` which will cause failures if you try to load conflicting ones. ## Other kernels Envkernel isn't specific to the IPython kernel. It defaults to ipykernel, but by using the `--kernel-template` option you can make it work with any other kernel without having to understand the internals. First, you install your other kernel normally, with some name (in this case, `R-3.6.1`). Then, you run envkernel with `--kernel-template=R-3.6.1`, which clones that (with all its support files from the kernel directory, argv, and so on), and (in this case) saves it to the same name with the `--name=R-3.6.1` option. ```shell # Load modules and install the IRKernel normally, without envkernel module load r-irkernel/1.1-python3 module load jupyterhub/live Rscript -e "library(IRkernel); IRkernel::installspec(name='R-3.6.1', displayname='R 3.6 module')" # Use envkernel --kernel-template # - Do the normal Lmod envkernel setup # - copy the existing kernel, incuding argv, kernel.js, icon, and display name # - Save it again, to the same name, with envkernel wrapper. envkernel lmod --user --kernel-template=R-3.6.1 --name=R-3.6.1 r-irkernel/1.1-python3 ``` This way, you can wrap any arbitrary kernel to run under envkernel. Also, you can always use `--kernel-cmd` to explicitly set your kernel command to whatever is needed for any other kernel (but you have to figure out that command yourself...). ## How it works When envkernel first runs, it sets up a kernelspec that will re-invoke envkernel when it runs. Some options are when firs run (kernelspec name and options), while usually most are passed through straight to the kernelspec. When the kernel is started, envkernel is re-invoked Example envkernel setup command. This makes a new Jupyter kernel (`envkernel singularity` means singularity create mode) named `testcourse-0.5.9` out of the image `/l/simg/0.5.9.simg` with the Singularity options `--contain` (contain, on default mounts) and `--bind` (bind a dir).` ```shell envkernel singularity --sys-prefix --name=testcourse-0.5.9 /l/simg/0.5.9.simg --contain --bind /m/jh/coursedata/:/coursedata ``` That will create this kernelspec. Note that most of the arguments are passed through: ```json { "argv": [ "/opt/conda-nbserver-0.5.9/bin/envkernel", "singularity", "run", "--connection-file", "{connection_file}", "--contain", "--bind", "/m/jh/coursedata/:/coursedata", "/l/simg/0.5.9.simg", "--", "python", "-m", "ipykernel_launcher", "-f", "{connection_file}" ], "display_name": "Singularity with /l/simg/0.5.9.simg", "language": "python" } ``` When this runs, it runs `singularity --contain --bind /m/jh/coursedata/:/coursedata /l/simg/0.5.9.simg`. Inside the image, it runs `python -m ipykernel_launcher -f {connection_file}`. envkernel parses and manipulates these arguments however is needed. ## Running multiple modes envkernel doesn't support running multiple modes - for example, `conda` and `lmod` at the same time. But, because of the general nature, you should be able to layer it yourself. The following example uses the `conda` mode to create an envkernel. Then, it uses `--kernel-template` to re-read that kernel and wrap it in `lmod`: ``` envkernel conda --name=test1 conda_path envkernel lmod --name=test1 --kernel-template=test1 lmod_module ``` There is nothing really special here, it is layering one envkernel execution on top of another. If you notice problems with this, please try to debug a bit and then send feedback/improvements, this is a relatively new feature. ## Use with nbgrader envkernel was orginally inspired by the need for nbgrader to securely contain student's code while autograding. To do this, set up a contained kernel as above - it's up to you to figure out how to do this properly with your chosen method (docker or singularity). Then autograde like normal, but add the `--ExecutePreprocessor.kernel_name` option. Set up a kernel: ```shell envkernel docker --user --name=testcourse-0.5.9 --pwd aaltoscienceit/notebook-server:0.5.9 --bind /mnt/jupyter/course/testcourse/data/:/coursedata ``` Run the autograding: ```shell nbgrader autograde --ExecutePreprocessor.kernel_name=testcourse-0.5.9 R1_Introduction ``` ## Kernel quick reference * `jupyter kernelspec list` * `jupyter kernelspec remove NAME` ## See also * General * [a2km, "Assistant to the kernel manager"](https://github.com/minrk/a2km) is a command line tool for dealing with kernels, including making kernels which activate conda/venv kernels. And some other handy kernel manipulations stuff. Unfortunately written in Ruby. * https://github.com/Anaconda-Platform/nb_conda_kernels - automatically create kernels from conda environments. Uses a KernelSpecManager so possibly overrides everything at once, and also defaults to all kernels. * The direct way to make a conda/virtualenv available in Jupyter is to activate the environment, then run `python -m ipykernel install [--user|--prefix=/path/to/other/env/]`. But this does *not* set up `PATH`, so calling other executables doesn't work... thus the benefit of envkernel. * [This thread](https://groups.google.com/forum/#!topic/jupyter/kQ9ZDX4rDEE) was the clue to getting a kernel inside Docker working. * The following commands are essential for kernel management * `jupyter kernelspec list` * `jupyter --paths` - each `$data_path/kernels` dir is searched for kernels. ## Development and contributions Developed at Aalto University Science-IT. Primary contact: Richard Darst. Contributions welcome from anyone. As of early 2019, it is mid 2019, it's usable but there may be bugs as it gets used in more sites.


زبان مورد نیاز

مقدار نام
>=3.5 Python


نحوه نصب


نصب پکیج whl envkernel-1.1.0:

    pip install envkernel-1.1.0.whl


نصب پکیج tar.gz envkernel-1.1.0:

    pip install envkernel-1.1.0.tar.gz