معرفی شرکت ها


ensemble-transformers-0.0.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Ensembling Hugging Face Transformers made easy
ویژگی مقدار
سیستم عامل -
نام فایل ensemble-transformers-0.0.2
نام ensemble-transformers
نسخه کتابخانه 0.0.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Jake Tae
ایمیل نویسنده jaesungtae@gmail.com
آدرس صفحه اصلی https://github.com/jaketae/ensemble-transformers
آدرس اینترنتی https://pypi.org/project/ensemble-transformers/
مجوز -
# Ensemble Transformers Ensembling Hugging Face Transformers made easy! ## Why Ensemble Transformers? Ensembling is a simple yet powerful way of combining predictions from different models to increase performance. Since multiple models are used to derive a prediction, ensembling offers a way of decreasing variance and increasing robustness. Ensemble Transformers provides an intuitive interface for ensembling pretrained models available in Hugging Face [`transformers`](https://huggingface.co/docs/transformers/index). ## Installation Ensemble Transformers is available on [PyPI](https://pypi.org/project/ensemble-transformers/) and can easily be installed with the `pip` package manager. ``` pip install -U pip wheel pip install ensemble-transformers ``` To try out the latest features, clone this repository and install from source. ``` git clone https://github.com/jaketae/ensemble-transformers.git cd ensemble-transformers pip install -e . ``` ## Quickstart Import an ensemble model class according to your use case, specify the list of backbone models to use, and run training or inference right away. ```python >>> from ensemble_transformers import EnsembleModelForSequenceClassification >>> ensemble = EnsembleModelForSequenceClassification.from_multiple_pretrained( "bert-base-uncased", "distilroberta-base", "xlnet-base-cased" ) >>> batch = ["This is a test sentence", "This is another test sentence."] >>> output = ensemble(batch) >>> output EnsembleModelOutput( logits: [tensor([[ 0.2430, -0.0581], [ 0.2145, -0.0541]], grad_fn=<AddmmBackward0>), tensor([[-0.0094, -0.0117], [-0.0118, -0.0046]], grad_fn=<AddmmBackward0>), tensor([[-0.0962, -1.1581], [-0.2195, -0.7422]], grad_fn=<AddmmBackward0>)], ) >>> stacked_output = ensemble(batch, mean_pool=True) >>> stacked_output EnsembleModelOutput( logits: tensor([[ 0.0458, -0.4093], [-0.0056, -0.2670]], grad_fn=<SumBackward1>), ) ``` ## Usage ### Ensembling with Configuration To declare an ensemble, first create a configuration object specifying the Hugging Face transformers auto class, as well as the list of models to use to create the ensemble. ```python from ensemble_transformers import EnsembleConfig, EnsembleModelForSequenceClassification config = EnsembleConfig( "AutoModelForSequenceClassification", model_names=["bert-base-uncased", "distilroberta-base", "xlnet-base-cased"] ) ``` The ensemble model can then be declared via ```python ensemble = EnsembleModelForSequenceClassification(config) ``` ### Ensembling with `from_multiple_pretrained` A more convenient way of declaring an ensemble is via `from_multiple_pretrained`, a method similar to `from_pretrained` in Hugging Face transformers. For instance, to perform text classification, we can use the `EnsembleModelForSequenceClassification` class. ```python from ensemble_transformers import EnsembleModelForSequenceClassification ensemble = EnsembleModelForSequenceClassification.from_multiple_pretrained( "bert-base-uncased", "distilroberta-base", "xlnet-base-cased" ) ``` Unlike Hugging Face transformers, which requires users to explicitly declare and initialize a preprocessor (e.g. `tokenizer`, `feature_extractor`, or `processor`) separate from the model, Ensemble Transformers automatically detects the preprocessor class and holds it within the `EnsembleModelForX` class as an internal attribute. Therefore, you do not have to declare a preprocessor yourself; Ensemble Transformers will do it for you. In the example below, we see that the `ensemble` object correctly holds 3 tokenizers for each model. ```python >>> len(ensemble.preprocessors) 3 >>> ensemble.preprocessors [PreTrainedTokenizerFast(name_or_path='bert-base-uncased', vocab_size=30522, model_max_len=512, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'unk_token': '[UNK]', 'sep_token': '[SEP]', 'pad_token': '[PAD]', 'cls_token': '[CLS]', 'mask_token': '[MASK]'}), PreTrainedTokenizerFast(name_or_path='distilroberta-base', vocab_size=50265, model_max_len=512, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'bos_token': '<s>', 'eos_token': '</s>', 'unk_token': '<unk>', 'sep_token': '</s>', 'pad_token': '<pad>', 'cls_token': '<s>', 'mask_token': AddedToken("<mask>", rstrip=False, lstrip=True, single_word=False, normalized=False)}), PreTrainedTokenizerFast(name_or_path='xlnet-base-cased', vocab_size=32000, model_max_len=1000000000000000019884624838656, is_fast=True, padding_side='left', truncation_side='right', special_tokens={'bos_token': '<s>', 'eos_token': '</s>', 'unk_token': '<unk>', 'sep_token': '<sep>', 'pad_token': '<pad>', 'cls_token': '<cls>', 'mask_token': AddedToken("<mask>", rstrip=False, lstrip=True, single_word=False, normalized=False), 'additional_special_tokens': ['<eop>', '<eod>']})] ``` ### Heterogenous Modality For the majority of use cases, it does not make sense to ensemble models from different modalities, e.g., a language model and an image model. As mentioned, Ensemble Transformers will auto-detect the modality of each model and prevent unintended mixing of models. ```python >>> from ensemble_transformers import EnsembleConfig >>> config = EnsembleConfig("AutoModelForSequenceClassification", model_names=["bert-base-uncased", "google/vit-base-patch16-224-in21k"]) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/Users/jaketae/Documents/Dev/github/ensemble-transformers/ensemble_transformers/config.py", line 37, in __init__ raise ValueError("Cannot ensemble models of different modalities.") ValueError: Cannot ensemble models of different modalities. ``` ### Loading Across Devices Because ensembling involves multiple models, it is often impossible to load all models onto a single device. To alleviate memory requirements, Ensemble Transformers offers a way of distributing models across different devices. For instance, say you have access to multiple GPU cards and want to load each model onto different GPUs. This can easily be achieved by the following line. ```python ensemble.to_multiple( ["cuda:0", "cuda:1", "cuda:2"] ) ``` The familiar `to(device)` method is also supported, and it loads all models onto the same device. ```python ensemble.to("cuda") ``` ### Forward Propagation To run forward propagation, simply pass a batch of raw input to the ensemble. In the case of language models, this is just a batch of text. ```python >>> batch = ["This is a test sentence", "This is another test sentence."] >>> output = ensemble(batch) >>> output EnsembleModelOutput( logits: [tensor([[ 0.2430, -0.0581], [ 0.2145, -0.0541]], grad_fn=<AddmmBackward0>), tensor([[-0.0094, -0.0117], [-0.0118, -0.0046]], grad_fn=<AddmmBackward0>), tensor([[-0.0962, -1.1581], [-0.2195, -0.7422]], grad_fn=<AddmmBackward0>)] ) >>> output.outputs [SequenceClassifierOutput(loss=None, logits=tensor([[ 0.1681, -0.3470], [ 0.1573, -0.1571]], grad_fn=<AddmmBackward0>), hidden_states=None, attentions=None), SequenceClassifierOutput(loss=None, logits=tensor([[ 0.1388, -0.0711], [ 0.1429, -0.0841]], grad_fn=<AddmmBackward0>), hidden_states=None, attentions=None), XLNetForSequenceClassificationOutput(loss=None, logits=tensor([[0.5506, 0.1506], [0.4308, 0.1397]], grad_fn=<AddmmBackward0>), mems=(tensor([[[ 0.0344, 0.0202, 0.0261, ..., -0.0175, -0.0343, 0.0252], [-0.0281, -0.0198, -0.0387, ..., -0.0420, -0.0160, -0.0253]], ..., [[ 0.2468, -0.4007, -1.0839, ..., -0.2943, -0.3944, 0.0605], [ 0.1970, 0.2106, -0.1448, ..., -0.6331, -0.0655, 0.7427]]])), hidden_states=None, attentions=None)] ``` By default, the ensemble returns a `EnsembleModelOutput` instance, which contains all the outputs from each model. The raw outputs from each model is accessible via the `.outputs` field. The `EnsembleModelOutput` class also scans across each of the raw output and collects common keys. In the example above, all model outputs contained a `.logits` field, which is why it appears as a field in the `output` instance. We can also stack or mean-pool the output of each model by toggling `mean_pool=True` in the forward call. ```python >>> stacked_output = ensemble(batch, mean_pool=True) >>> stacked_output EnsembleModelOutput( logits: tensor([[ 0.0458, -0.4093], [-0.0056, -0.2670]], grad_fn=<SumBackward1>), ) ``` If the models are spread across different devices, the result is collected in `main_device`, which defaults to the CPU. ### Preprocessor Arguments Preprocessors accept a number of optional arguments. For instance, for simple batching, `padding=True` is used. Moreover, PyTorch models require `return_tensors="pt"`. Ensemble Transformers already ships with minimal, sensible defaults so that it works out-of-the-box. However, for more custom behavior, you can modify the `preprocessor_kwargs` argument. The example below demonstrates how to use TensorFlow language models without padding. ```python ensemble(batch, preprocessor_kwargs={"return_tensors": "tf", "padding": False}) ``` ## Contributing This repository is under active development. Any and all issues and pull requests are welcome. If you would prefer, feel free to reach out to me at jaesungtae@gmail.com. ## License Released under the [MIT License](LICENSE).


نیازمندی

مقدار نام
- torch
- transformers


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl ensemble-transformers-0.0.2:

    pip install ensemble-transformers-0.0.2.whl


نصب پکیج tar.gz ensemble-transformers-0.0.2:

    pip install ensemble-transformers-0.0.2.tar.gz