معرفی شرکت ها


enderturing-0.8.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Python SDK for EnderTuring speech toolkit
ویژگی مقدار
سیستم عامل -
نام فایل enderturing-0.8.0
نام enderturing
نسخه کتابخانه 0.8.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده EnderTuring
ایمیل نویسنده info@enderturing.com
آدرس صفحه اصلی https://enderturing.com/
آدرس اینترنتی https://pypi.org/project/enderturing/
مجوز MIT
# Ender Turing Ender Turing is a solution for voice content understanding, analytics and business insights. Check [enderturing.com](https://enderturing.com/) for details. ## Installation ```shell $ pip install enderturing ``` For using streaming speech recognition functions, you'll also need FFmpeg installed. Ubuntu: ```shell $ sudo apt install ffmpeg ``` MacOS homebrew: ```shell $ brew install ffmpeg ``` For other OS, please follow FFmpeg installation guides. ## Quick Start ```python import asyncio from enderturing import Config, EnderTuring, RecognitionResultFormat # create configuration config = Config.from_url("https://admin%40local.enderturing.com:your_password@enterturing.yourcompany.com") et = EnderTuring(config) # access sessions list sessions = et.sessions.list() print(sessions) # get recognizer for one of configured languages recognizer = et.get_speech_recognizer(language='en') async def run_stream_recog(f, r, result_format): async with r.stream_recognize(f, result_format=result_format) as rec: text = await rec.read() return text # recognize specified file loop = asyncio.get_event_loop() task = loop.create_task(run_stream_recog("my_audio.mp3", recognizer, result_format=RecognitionResultFormat.text)) loop.run_until_complete(task) print(task.result()) ``` ## Usage SDK contains two major parts: - Using Ender Turing REST API - Speech recognition ## Using Ender Turing API All API calls are accessible via an instance or `EnderTuring`. API methods are grouped, and each group is a property of `EnderTuring`. Examples: ```python from enderturing import Config, EnderTuring, RecognitionResultFormat et = EnderTuring(Config.from_env()) # access sessions list sessions = et.sessions.list() # working with ASR et.asr.get_instances(active_only=True) # accessing raw json et.raw.create_event(caller_id='1234', event_data={"type": "hold"}) ``` ## Access Configuration To access API, you need to know an authentication key (login), authentication secret (password), and installation URL (e.g. https://enderturing.yourcompany.com/) There are multiple ways to pass config options: - from environmental variables (`Config.from_env()`). - creating `Config` with parameters (e.g. `Config(auth_key="my_login", auth_secret="my_secret"")`) - using Enter Turing configuration URL (`Config.from_url()`) ## Creating Speech Recognizer There two options to create a speech recognizer: ### If you have access to API configured: ```python recognizer = et.get_speech_recognizer(language='en') ``` ### If you know URL and sample rate of desired ASR instance: ```python from enderturing import AsrConfig, SpeechRecognizer config = AsrConfig(url="wss://enderturing", sample_rate=8000) recognizer = SpeechRecognizer(config) ``` ## Recognizing a File `SpeechRecognizer.recognize_file` method returns an async text stream. Depending on parameters, each line contains either a text of utterance or serialized JSON. If you are only interested in results after recognition is complete, you can use the `read()` method. E.g. ```python async with recognizer.recognize_file("my_audio.wav", result_format=RecognitionResultFormat.text) as rec: text = await rec.read() ``` If you prefer getting words and phrases as soon as they are recognized - you can use the `readline()` method instead. E.g. ```python async with recognizer.recognize_file(src, result_format=RecognitionResultFormat.jsonl) as rec: line = await rec.readline() while line: # Now line contains a json string, you can save it or do something else with it line = await rec.readline() ``` ## Working With Multichannel Audio If an audio file has more than one channel - by default system will recognize each channel and return a transcript for each channel. To change the default behavior - you can use `channels` parameter of `SpeechRecognizer.recognize_file`. Please check method documentation for details. Sometimes an audio is stored as a file per channel, e.g., contact center call generates two files: one for a client and one for a support agent. But for analysis, it's preferable to see transcripts of the files merged as a dialog. In this scenario, you can use `recognizer.recognize_joined_file([audio1, audio2])`. ## License Released under the MIT license.


نیازمندی

مقدار نام
>=10.3,<11.0 websockets
>=2.28.0,<3.0.0 requests
>=1.9.1,<2.0.0 pydantic


زبان مورد نیاز

مقدار نام
>=3.8,<4.0 Python


نحوه نصب


نصب پکیج whl enderturing-0.8.0:

    pip install enderturing-0.8.0.whl


نصب پکیج tar.gz enderturing-0.8.0:

    pip install enderturing-0.8.0.tar.gz