معرفی شرکت ها


enda-0.0.8


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Tools to manipulate energy time-series and contracts, and to perform forecasts.
ویژگی مقدار
سیستم عامل -
نام فایل enda-0.0.8
نام enda
نسخه کتابخانه 0.0.8
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Enercoop
ایمیل نویسنده team-data@enercoop.org
آدرس صفحه اصلی https://github.com/enercoop/enda
آدرس اینترنتی https://pypi.org/project/enda/
مجوز MIT
# enda ## What is it? **enda** is a Python package that provides tools to manipulate **timeseries** data in conjunction with **contracts** data for analysis and **forecasts**. Its main goal is to help [Rescoop.eu](https://www.rescoop.eu/) members build various applications, such as short-term electricity load and production forecasts, specifically for the [RescoopVPP](https://www.rescoopvpp.eu/) project. Hence some tools in this package perform TSO (transmission network operator) and DNO (distribution network operator) data wrangling as well as weather data management. enda is mainly developed by [Enercoop](https://www.enercoop.fr/). ## Main Features Here are some things **enda** does well : - Provide robust machine learning algorithms for short-term electricty load and production forecasts, developed by Enercoop. The load forecast was originally based on Komi Nagbe's thesis (http://www.theses.fr/s148364). - Manipulate **contracts** data coming from your ERP and turn it into timeseries you can use for analysis, visualisation and machine learning. - Timeseries-specific detection of missing data, like time gaps and frequency changes. - Date-time feature engineering robust to timezone hazards. ## Where to get it The source code is currently hosted on GitHub at : https://github.com/enercoop/enda Binary installers for the latest released version are available at the [Python Package Index (PyPI)](https://pypi.org/project/enda) (for now it is not directly on [Conda](https://docs.conda.io/en/latest/)). ```sh # PyPI pip install enda ``` ## How to get started ? Check out the guides : https://github.com/enercoop/enda/tree/main/guides . ## Hard dependencies - [Pandas - the main dataframe manipulation tool for python, advanced timeseries management included.](https://pandas.pydata.org/) - Pandas itself has hard dependencies and optional dependencies, checkout https://pandas.pydata.org/pandas-docs/stable/getting_started/install.html . Hard dependencies of pandas include : `setuptools`, `NumPy`, `python-dateutil`, `pytz`. ## Optional dependencies Optional dependencies are used only for specific methods. Enda will give an error if the method called requires a dependency that is not installed. Enda can work with different machine learning "backends" : - [Scikit-learn](https://scikit-learn.org/stable/) - [H2O - an efficient machine learning framework](https://docs.h2o.ai/) You can also easily implement your own ml-backend by implementing enda's ModelInterface. Checkout `enda.ml_backends.sklearn_linreg.py` for an example with `SKLearnLinearRegression`. Other optional dependencies : - [statsmodel](https://pypi.org/project/statsmodels/) Furthermore, don't hesitate to install pandas "Recommended dependencies" for speed-ups : `numexpr` and `bottleneck`. If you want to save your trained models, we recommend `joblib`. See Scikit-learn's recommendations here : https://scikit-learn.org/stable/modules/model_persistence.html . An almost complete install looks like : ``` pip install numexpr bottleneck pandas enda jupyter h2o scikit-learn statsmodels joblib matplotlib ``` ## License [MIT](LICENSE)


نیازمندی

مقدار نام
>=1.0.0 pandas


زبان مورد نیاز

مقدار نام
>=3.7.3 Python


نحوه نصب


نصب پکیج whl enda-0.0.8:

    pip install enda-0.0.8.whl


نصب پکیج tar.gz enda-0.0.8:

    pip install enda-0.0.8.tar.gz