معرفی شرکت ها


encodeproject-1.0.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Python package wrapping some of the encode project APIs.
ویژگی مقدار
سیستم عامل -
نام فایل encodeproject-1.0.9
نام encodeproject
نسخه کتابخانه 1.0.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Luca Cappelletti
ایمیل نویسنده cappelletti.luca94@gmail.com
آدرس صفحه اصلی https://github.com/LucaCappelletti94/encodeproject
آدرس اینترنتی https://pypi.org/project/encodeproject/
مجوز MIT
encodeproject ========================================================================================= |pip| |downloads| Python package wrapping some of the encode project APIs. There is a `short Notebook with a tutorial available here <https://github.com/LucaCappelletti94/bioinformatics_practice/blob/master/Notebooks/Retrieving%20data%20from%20ENCODE%20-%20Practical%20example.ipynb>`_. How do I install this package? ---------------------------------------------- As usual, just download it using pip: .. code:: shell pip install encodeproject Usage Examples ----------------------------------------------- The package contains both methods to run queries on the `Encode Project APIs <https://www.encodeproject.org/help/rest-api/>`_ and methods to filter the responses. Every available method has a comprehensive docstring attached to it, so I welcome you to read the source code. Queries ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The library currently offers to query methods that already integrate some filtering properties: one for the `experiments <https://www.encodeproject.org/experiments/>`_ and one for the `biosamples <https://www.encodeproject.org/biosamples/>`_. For querying the experiments you can run the following: .. code:: python from encodeproject import experiment experiments = experiment() Let's take a look to an in-depth example, showing all the available parameters: .. code:: python from encodeproject import experiment experiments = experiment( # The cell line we are interested in. # For example values could be K562 or GM12878. # We use None to specify that we are not # interested in any particular cell line. cell_line = None, # The reference genomic assembly we want. # For example values could be hg19 or GRCh38 # We use None to specify that we are not # interested in any particular genomic assembly. assembly = None, # The target (the genes coding for proteins in this context) we want. # For example values could be CTCF or H3K27ac # We use None to specify that we are not # interested in any particular target. target = None, # The status of the data we want. # We only want released data, meaning data that are # neither old (archived) or with errors (revoked). status = 'released', # The organism we are considering. # Since we only want Homo sapiens data, # we specify that organism name. organism = 'Homo sapiens', # The format of the files we are interested in file_type = 'bigWig', # We ask to consider only experiments with replicas replicated = True, # We only want with the signals # expressed as "fold change over control" searchTerm = "fold change over control", # We do not need to specify any other specific # additional parameters parameters = None, # We want to download all the # available experiments limit = 'all', # We want to drop all the experiments # which have been characterized by significand issues drop_errors = ( 'extremely low read depth', 'missing control alignments', 'control extremely low read depth', 'extremely low spot score', 'extremely low coverage', 'extremely low read length', 'inconsistent control', 'inconsistent read count' ) ) All parameters are optional, they just act as additional filters. For querying the biosamples you can run the following: .. code:: python from encodeproject import biosample my_biosample_query_response = biosample( accession="ENCSR000EDP", # The accession code for the desired biosample ) As for the experiments there are a number of filters available: .. code:: python hg19_samples = biosamples( # The list of accessions to retrieve accessions=accession_codes, # Wethever to convert the results in dataframe. # The following filters only apply if dataframes are used to_dataframe = True, # The status of the data we want. # We only want released data, meaning data that are # neither old (archived) or with errors (revoked). status = "released", # The organism we want. organism = "human", # The genomic assembly we want to use assembly = "hg19", # The output type we want. output_type = "fold change over control", # And finally the bare minimum amount # of biological replicates min_biological_replicates = 2 ) For running multiple queries for biosamples at once you can run the following: .. code:: python from encodeproject import biosamples responses = biosamples( accessions=["ENCSR000EDP", "ENCSR030EDP", "ENCSR067EDP"], # The accessions code for the desired biosamples ) Filters ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Since the response files can get quite big and hard to read, I've prepared also a couple filter functions. For filtering the accessions codes from an experiment response you can use: .. code:: python from encodeproject import accessions codes = accessions(my_experiment_query_response) For filtering the download URLs from a biosample response you can use: .. code:: python from encodeproject import download_urls codes = download_urls(my_biosample_query_response) Utilities ----------------------------------------- Download utility ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I've added also a method to download from a given URL, showing a loading bar, based on `this answer from StackOverflow <https://stackoverflow.com/questions/37573483/progress-bar-while-download-file-over-http-with-requests/37573701#37573701>`_. .. code:: python from encodeproject import download download("https://encode-public.s3.amazonaws.com/2012/07/01/074e1b37-2be1-4f6a-aa42-6c512fd1834b/ENCFF000XOW.bigWig") Sample to DataFrame instruction ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Utility to convert a sample to a relatively simple `pandas DataFrame <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html>`_. .. code:: python from encodeproject import biosample_to_dataframe df = biosample_to_dataframe(my_biosample_query_response) Issues and Feature Requests ----------------------------------------- This library started out of necessity to script some queries on the encodeproject. If you need some specific feature that isn't currently already offered by the library, please do proceed with a pull request (quickest way: add the feature yourself and push it on the library) or alternatively you can open an issue and when I'll get the time I'll see to it. .. |pip| image:: https://badge.fury.io/py/encodeproject.svg :target: https://badge.fury.io/py/encodeproject :alt: Pypi project .. |downloads| image:: https://pepy.tech/badge/encodeproject :target: https://pepy.tech/badge/encodeproject :alt: Pypi total project downloads


زبان مورد نیاز

مقدار نام
>3.5.2 Python


نحوه نصب


نصب پکیج whl encodeproject-1.0.9:

    pip install encodeproject-1.0.9.whl


نصب پکیج tar.gz encodeproject-1.0.9:

    pip install encodeproject-1.0.9.tar.gz