معرفی شرکت ها


enchanter-0.9.0b0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Enchanter is a library for machine learning tasks for comet.ml users.
ویژگی مقدار
سیستم عامل -
نام فایل enchanter-0.9.0b0
نام enchanter
نسخه کتابخانه 0.9.0b0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Hirotaka Kawashima
ایمیل نویسنده khirotaka@vivaldi.net
آدرس صفحه اصلی https://enchanter.readthedocs.io/
آدرس اینترنتی https://pypi.org/project/enchanter/
مجوز Apache-2.0
<div align="center"> <img src="docs/_static/images/Enchanter-Logo.png" width="200px"> # Enchanter Enchanter is a library for machine learning tasks for comet.ml users. <p align="center"> <a href="#Getting-Started">Getting Started</a> • <a href="https://enchanter.readthedocs.io/en/stable/">Docs</a> • <a href="https://enchanter.readthedocs.io/en/stable/tutorial/modules.html">Tutorial</a> • <a href="LICENSE">Licence</a> </p> [![Codacy Badge](https://api.codacy.com/project/badge/Grade/163d7df85c2548169a247bdaf576cb83)](https://app.codacy.com/gh/khirotaka/enchanter?utm_source=github.com&utm_medium=referral&utm_content=khirotaka/enchanter&utm_campaign=Badge_Grade_Settings) [![Build & Publish](https://github.com/khirotaka/enchanter/workflows/Build%20&%20Publish/badge.svg)](https://github.com/khirotaka/enchanter/actions) [![PyPI](https://img.shields.io/pypi/v/enchanter?color=brightgreen)](https://pypi.org/project/enchanter/) [![Documentation Status](https://readthedocs.org/projects/enchanter/badge/?version=latest)](https://enchanter.readthedocs.io/) [![CI macOS](https://github.com/khirotaka/enchanter/workflows/CI%20macOS/badge.svg)](https://github.com/khirotaka/enchanter/actions?query=workflow%3A%22CI+macOS%22) [![CI Linux](https://github.com/khirotaka/enchanter/workflows/CI%20Linux/badge.svg)](https://github.com/khirotaka/enchanter/actions?query=workflow%3A%22CI+Linux%22) [![license](https://img.shields.io/github/license/khirotaka/enchanter?color=light)](LICENSE) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) [![Using PyTorch](https://img.shields.io/badge/PyTorch-red.svg?labelColor=f3f4f7&logo=)](https://pytorch.org/) </div> --- ## Installation To get started, [install PyTorch](https://pytorch.org) for your environment. Then install Enchanter in the following way: To install the stable release. ```shell script pip install enchanter ``` or To install the latest(unstable) release. ```shell script pip install git+https://github.com/khirotaka/enchanter.git ``` If you want to install with a specific branch, you can use the following. ```shell script # e.g.) Install enchanter from develop branch. pip install git+https://github.com/khirotaka/enchanter.git@develop ``` ### Supported Platforms Enchanter supports: * macOS 10.15 * Ubuntu 18.04 or later ## Getting Started Try your first Enchanter Program. To train a neural network written in PyTorch on Enchanter, use the `Runner`. There are 2 ways to define a `Runner`: 1. To use a `Runner` already implemented under `enchanter.tasks` 2. To define a custom `Runner` that inherit `enchanter.engine.BaseRunner`. Let's see how to use the `enchanter.tasks.ClassificationRunner`, which is the easiest way. ### Training Neural Network ```python import comet_ml import torch import enchanter model = torch.nn.Linear(6, 10) optimizer = torch.optim.Adam(model.parameters()) runner = enchanter.tasks.ClassificationRunner( model, optimizer, criterion=torch.nn.CrossEntropyLoss(), experiment=comet_ml.Experiment() ) runner.add_loader("train", train_loader) runner.train_config(epochs=10) runner.run() ``` Register a `torch.utils.data.DataLoader` with the `Runner` by using `.add_loader()`. Set up the number of epochs using `.train_config()`, and execute `Runner` with `.run()`. ### Training Unsupervised Time Series Feature Learning The wonderful algorithms for unsupervised time series representation learning, adopted at [NeurIPS 2019](https://papers.nips.cc/paper/8713-unsupervised-scalable-representation-learning-for-multivariate-time-series), are now easily available. Please prepare the following: 1. PyTorch Model that can output feature vectors of the same length regardless of the input series. 2. time series data consisting of `[N, F, L]`. 3. (Optional) A teacher label for each sample in `2.` ```python import comet_ml import torch.nn as nn import torch.optim as optim import enchanter.tasks as tasks import enchanter.addons.layers as L class Encoder(nn.Module): def __init__(self, in_features, mid_features, out_features): super(Encoder, self).__init__() self.conv = nn.Sequential( L.CausalConv1d(in_features, mid_features, 3), nn.LeakyReLU(), L.CausalConv1d(mid_features, mid_features, 3), nn.LeakyReLU(), L.CausalConv1d(mid_features, mid_features, 3), nn.LeakyReLU(), nn.AdaptiveMaxPool1d(1) ) self.fc = nn.Linear(mid_features, out_features) def forward(self, x): batch = x.shape[0] out = self.conv(x).reshape(batch, -1) return self.fc(out) experiment = comet_ml.Experiment() model = Encoder(...) optimizer = optim.Adam(model.parameters()) runner = tasks.TimeSeriesUnsupervisedRunner(model, optimizer, experiment) runner.add_loader("train", ...) runner.run() ``` A teacher label is required for validation. Also, Use `enchanter.callbacks.EarlyStoppingForTSUS` for early stopping. ### Hyper parameter searching using Comet.ml ```python from comet_ml import Optimizer import torch import torch.nn as nn import torch.optim as optim from sklearn.datasets import load_iris import enchanter.tasks as tasks import enchanter.addons as addons import enchanter.addons.layers as layers from enchanter.utils import comet config = comet.TunerConfigGenerator( algorithm="bayes", metric="train_avg_loss", objective="minimize", seed=0, trials=1, max_combo=10 ) config.suggest_categorical("activation", ["addons.mish", "torch.relu", "torch.sigmoid"]) opt = Optimizer(config.generate()) x, y = load_iris(return_X_y=True) x = x.astype("float32") y = y.astype("int64") for experiment in opt.get_experiments(): model = layers.MLP([4, 512, 128, 3], eval(experiment.get_parameter("activation"))) optimizer = optim.Adam(model.parameters()) runner = tasks.ClassificationRunner( model, optimizer=optimizer, criterion=nn.CrossEntropyLoss(), experiment=experiment ) runner.fit(x, y, epochs=1, batch_size=32) runner.quite() # or # with runner: # runner.fit(...) # or # runner.run() ``` ### Training with Mixed Precision Runners with defined in `enchanter.tasks` are now support Auto Mixed Precision. Write the following. ```python from torch.cuda import amp from enchanter.tasks import ClassificationRunner runner = ClassificationRunner(...) runner.scaler = amp.GradScaler() ``` If you want to define a custom runner that supports mixed precision, do the following. ```python from torch.cuda import amp import torch.nn.functional as F from enchanter.engine import BaseRunner class CustomRunner(BaseRunner): # ... def train_step(self, batch): x, y = batch with amp.autocast(): # REQUIRED out = self.model(x) loss = F.nll_loss(out, y) return {"loss": loss} runner = CustomRunner(...) runner.scaler = amp.GradScaler() ``` That is, you can enable AMP by using `torch.cuda.amp.autocast()` in `.train_step()`, `.val_step()` and `.test_step()`. ### with-statement training ```python from comet_ml import Experiment import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader from sklearn.datasets import load_iris from tqdm.auto import tqdm import enchanter.tasks as tasks import enchanter.engine.modules as modules import enchanter.addons as addons import enchanter.addons.layers as layers experiment = Experiment() model = layers.MLP([4, 512, 128, 3], addons.mish) optimizer = optim.Adam(model.parameters()) x, y = load_iris(return_X_y=True) x = x.astype("float32") y = y.astype("int64") train_ds = modules.get_dataset(x, y) val_ds = modules.get_dataset(x, y) test_ds = modules.get_dataset(x, y) train_loader = DataLoader(train_ds, batch_size=32) val_loader = DataLoader(val_ds, batch_size=32) test_loader = DataLoader(test_ds, batch_size=32) runner = tasks.ClassificationRunner( model, optimizer, nn.CrossEntropyLoss(), experiment ) with runner: for epoch in tqdm(range(10)): with runner.experiment.train(): for train_batch in train_loader: runner.optimizer.zero_grad() train_out = runner.train_step(train_batch) runner.backward(train_out["loss"]) runner.update_optimizer() with runner.experiment.validate(), torch.no_grad(): for val_batch in val_loader: val_out = runner.val_step(val_batch)["loss"] runner.experiment.log_metric("val_loss", val_out) with runner.experiment.test(), torch.no_grad(): for test_batch in test_loader: test_out = runner.test_step(test_batch)["loss"] runner.experiment.log_metric("test_loss", test_out) # The latest checkpoints (model_state & optim_state) are stored # in comet.ml after the with statement. ``` ## Graph visualization ```python import torch from enchanter.utils import visualize from enchanter.addons.layers import AutoEncoder x = torch.randn(1, 32) # [N, in_features] model = AutoEncoder([32, 16, 8, 2]) visualize.with_netron(model, (x, )) ``` ![netron_graph](docs/tutorial/assets/netron_viewer.png) ## License [Apache License 2.0](LICENSE)


نیازمندی

مقدار نام
>=1.17,<2.0 numpy
>=0.23,<0.25 scikit-learn
>=4.41,<5.0 tqdm
>=2.1,<3.0 tensorboard
>=1.0,<2.0 pandas
>=4.5,<6.0) netron
>=3.1.3,<4.0.0) comet_ml


زبان مورد نیاز

مقدار نام
>=3.7,<4.0 Python


نحوه نصب


نصب پکیج whl enchanter-0.9.0b0:

    pip install enchanter-0.9.0b0.whl


نصب پکیج tar.gz enchanter-0.9.0b0:

    pip install enchanter-0.9.0b0.tar.gz